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The adversary knows the cryptogram and the public key
and wishes to recover the message (or equivalently the error)

Only an arbitrary generator matrix is known

→ generic decoding problem
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Generic Decoding
In contrast with the usual situation where the code is known in advance, a generic
decoder takes a q-ary linear [n, k ] code as argument

G ∈ Fk×n
q a generator matrix H ∈ F(n−k)×n

q a parity check matrix
C = 〈G〉 = {xG | x ∈ Fk

q } C = 〈H〉⊥ = {c ∈ Fn
q | cHT = 0}

Generic Decoder: Generic Syndrome Decoder:
Φ : Fn

q × Fk×n
q → Fk

q

Φ(xG + e,G) = x if e is “small”
Ψ : Fn−k

q × F(n−k)×n
q → Fn

q

Ψ(eHT ,H) = e if e is “small”

Those two kinds of decoders are equivalent

→ we will consider only syndrome decoding
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The Syndrome Decoding Problem
Syndrome Decoding Problem

Instance: H ∈ {0,1}(n−k)×n, s ∈ {0,1}n−k , an integer w > 0
Answer: e ∈ {0,1}n such that eHT = s and wt(e) ≤ w

Find w columns of H adding to s (modulo 2)

H = h1 h2 · · · hn s =

-�
n

6

?

n − k

Find 1 ≤ j1 < j2 < · · · < jw ≤ n such that

hj1 + hj2 + · · ·+ hjw = s
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Single Solution versus Multiple Solution
Syndrome Decoding Problem

Instance: H ∈ {0,1}(n−k)×n, s ∈ {0,1}n−k , an integer w > 0
Answer: e ∈ {0,1}n such that eHT = s and wt(e) ≤ w

We denote CSD(H, s,w) the set of all solutions to the above problem
Fix n and k and let w grow

-

0
w

4



Single Solution versus Multiple Solution
Syndrome Decoding Problem

Instance: H ∈ {0,1}(n−k)×n, s ∈ {0,1}n−k , an integer w > 0
Answer: e ∈ {0,1}n such that eHT = s and wt(e) ≤ w

We denote CSD(H, s,w) the set of all solutions to the above problem

Fix n and k and let w grow

-

0
w

4



Single Solution versus Multiple Solution
Syndrome Decoding Problem

Instance: H ∈ {0,1}(n−k)×n, s ∈ {0,1}n−k , an integer w > 0
Answer: e ∈ {0,1}n such that eHT = s and wt(e) ≤ w

We denote CSD(H, s,w) the set of all solutions to the above problem
Fix n and k and let w grow

-

-
(n

w

)
2n−k solutions on average

0
w

4



Single Solution versus Multiple Solution
Syndrome Decoding Problem

Instance: H ∈ {0,1}(n−k)×n, s ∈ {0,1}n−k , an integer w > 0
Answer: e ∈ {0,1}n such that eHT = s and wt(e) ≤ w

We denote CSD(H, s,w) the set of all solutions to the above problem
Fix n and k and let w grow

-

-
(n

w

)
2n−k solutions on average

0 τGV

w

Gilbert-Varshamov radius
( n
τGV

)
= 2n−k

4



Single Solution versus Multiple Solution
Syndrome Decoding Problem

Instance: H ∈ {0,1}(n−k)×n, s ∈ {0,1}n−k , an integer w > 0
Answer: e ∈ {0,1}n such that eHT = s and wt(e) ≤ w

We denote CSD(H, s,w) the set of all solutions to the above problem
Fix n and k and let w grow

-

�at most one solution -
(n

w

)
2n−k solutions on average

0 τGV

w

Gilbert-Varshamov radius
( n
τGV

)
= 2n−k

4



Single Solution versus Multiple Solution
Syndrome Decoding Problem

Instance: H ∈ {0,1}(n−k)×n, s ∈ {0,1}n−k , an integer w > 0
Answer: e ∈ {0,1}n such that eHT = s and wt(e) ≤ w

We denote CSD(H, s,w) the set of all solutions to the above problem
Fix n and k and let w grow

-

�
exactly
���

�at most one solution -
(n

w

)
2n−k solutions on average

0 τGV

w

Gilbert-Varshamov radius
( n
τGV

)
= 2n−k

In cryptanalysis, we only consider situations where CSD(H, s,w) 6= ∅

4



Single Solution versus Multiple Solution
Syndrome Decoding Problem

Instance: H ∈ {0,1}(n−k)×n, s ∈ {0,1}n−k , an integer w > 0
Answer: e ∈ {0,1}n such that eHT = s and wt(e) ≤ w

We denote CSD(H, s,w) the set of all solutions to the above problem
Fix n and k and let w grow

-

�
exactly
���

�at most one solution -
(n

w

)
2n−k solutions on average

0 τGV

w

Gilbert-Varshamov radius
( n
τGV

)
= 2n−k

In cryptanalysis, we only consider situations where CSD(H, s,w) 6= ∅
We expect ≈ max

(
1,
(n

w

)
/2n−k) solutions

4
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Exhaustive Search

Problem: find w columns of
H adding to s (modulo 2) H = h1 h2 · · · hn s =

-� n

6

?

n − k

Answer: enumerate all w-tuples (j1, j2, · · · , jw ) such that 1 ≤ j1 < j2 < . . . < jw ≤ n
and check whether s + hj1 + hj2 · · · + hjw = 0

How to enumerate nicely
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Exhaustive Search

Problem: find w columns of
H adding to s (modulo 2) H = h1 h2 · · · hn s =

-� n

6

?

n − k

Answer: enumerate all w-tuples (j1, j2, · · · , jw ) such that 1 ≤ j1 < j2 < . . . < jw ≤ n
and check whether s + hj1 + hj2 · · · + hjw = 0

How to enumerate nicely

Requires about
(

n
w

)
column operations

Note that we obtain all solutions
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Birthday Decoding

Problem: find w columns of
H adding to s (modulo 2) H = H1 H2 s =

-� n

6

?

n − k

Answer: Split H into two equal parts and enumerate the two following sets

L1 =
{

e1HT
1 | wt(e1) =

w
2

}
and L2 =

{
s + e2HT

2 | wt(e2) =
w
2

}
If L1 ∩ L2 6= ∅, we have solution(s): s + e1HT

1 + e2HT
2 = 0

Algorithm
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Birthday Decoding

Problem: find w columns of
H adding to s (modulo 2) H = H1 H2 s =

-� n

6

?

n − k

Answer: Split H into two equal parts and enumerate the two following sets

L1 =
{

e1HT
1 | wt(e1) =

w
2

}
and L2 =

{
s + e2HT

2 | wt(e2) =
w
2

}
If L1 ∩ L2 6= ∅, we have solution(s): s + e1HT

1 + e2HT
2 = 0

Algorithm

Requires about 2
(n/2

w/2
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Birthday Decoding – Complexity
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n − k
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)One particular error of Hamming weight w splits evenly with probability
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Birthday Decoding – Complexity

Problem: find w columns of
H adding to s (modulo 2) H = H1 H2 s =

-� n

6

?

n − k

P =

(n/2
w/2

)2(n
w

)One particular error of Hamming weight w splits evenly with probability

We may have to repeat with H divided in several different ways

or more generally by picking the two halves randomly
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Birthday Decoding – Complexity

Problem: find w columns of
H adding to s (modulo 2) H = H1 H2 s =

-� n

6
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Birthday Decoding – Complexity

Problem: find w columns of
H adding to s (modulo 2) H = H1 H2 s =
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Relaxation: allow overlapping→ H1 and H2 are wider by ε
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repeat with ≈ 1
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2. compute L1 ∩ L2
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3. Message Attack (ISD)
1. From Generic Decoding to Syndrome Decoding
2. Combinatorial Solutions: Exhaustive Search and Birthday Decoding
3. Information Set Decoding: the Power of Linear Algebra
4. Complexity Analysis
5. Lee and Brickell Algorithm
6. Stern/Dumer Algorithm
7. May, Meurer, and Thomae Algorithm
8. Becker, Joux, May, and Meurer Algorithm
9. Generalized Birthday Algorithm for Decoding

10. Decoding One Out of Many
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Information Set Decoding: Using Linear Algebra

For any invertible U ∈ {0,1}(n−k)×(n−k) and any permutation matrix P ∈ {0,1}n×n

(
eHT = s

)
⇔
(

e′H ′T = s′
)

where


H ′ ← UHP
s′ ← sUT

e′ ← eP

1



Information Set Decoding: Using Linear Algebra

For any invertible U ∈ {0,1}(n−k)×(n−k) and any permutation matrix P ∈ {0,1}n×n

(
eHT = s

)
⇔
(

e′H ′T = s′
)

where


H ′ ← UHP
s′ ← sUT

e′ ← eP

Proof: e′H ′T = (eP)(UHP)T

= (eP)PT HT UT

= eHT UT

= sUT

= s′

1



Information Set Decoding: Using Linear Algebra

For any invertible U ∈ {0,1}(n−k)×(n−k) and any permutation matrix P ∈ {0,1}n×n

CSD(H, s,w) ≡ CSD(UHP, sUT ,w)
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Information Set Decoding: Using Linear Algebra

For any invertible U ∈ {0,1}(n−k)×(n−k) and any permutation matrix P ∈ {0,1}n×n

CSD(H, s,w) ≡ CSD(UHP, sUT ,w)

In particular H ′ = UHP =

information set
1

1

and s′ = sUT =

possible if the first n−k
columns of HP are
independent

�
���

︸ ︷︷ ︸
n − k

in which case the rightmost k
positions form an information set

@
@
@I

︸ ︷︷ ︸
k

@
@@
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Information Set Decoding: Using Linear Algebra

For any invertible U ∈ {0,1}(n−k)×(n−k) and any permutation matrix P ∈ {0,1}n×n

CSD(H, s,w) ≡ CSD(UHP, sUT ,w)

In particular H ′ = UHP =

information set
1

1

and s′ = sUT =

e′ = eP = weight w 0 0

@
@@

If we are lucky
– the error positions are out of the information set
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Information Set Decoding: Using Linear Algebra

For any invertible U ∈ {0,1}(n−k)×(n−k) and any permutation matrix P ∈ {0,1}n×n

CSD(H, s,w) ≡ CSD(UHP, sUT ,w)

In particular H ′ = UHP =

information set
1

1

and s′ = sUT =

e′ = eP = s′ 0 0

@
@@

If we are lucky
– the error positions are out of the information set
– easy to check because e′ = (s′ | 0) and wt(s′) = w

1



Prange Algorithm
input: H ∈ {0,1}(n−k)×n, s ∈ {0,1}n−k , integer w > 0
output: e ∈ {0,1}n such that eHT = s and wt(e) = w

2



Prange Algorithm
input: H ∈ {0,1}(n−k)×n, s ∈ {0,1}n−k , integer w > 0
output: e ∈ {0,1}n such that eHT = s and wt(e) = w

repeat:
pick a permutation matrix P

2



Prange Algorithm
input: H ∈ {0,1}(n−k)×n, s ∈ {0,1}n−k , integer w > 0
output: e ∈ {0,1}n such that eHT = s and wt(e) = w

repeat:
pick a permutation matrix P

compute UHP =

1

1

@
@@

(Gaussian elimination)
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Prange Algorithm
input: H ∈ {0,1}(n−k)×n, s ∈ {0,1}n−k , integer w > 0
output: e ∈ {0,1}n such that eHT = s and wt(e) = w

repeat:
pick a permutation matrix P

compute UHP =

1

1

@
@@

(Gaussian elimination)

if wt(sUT ) = w then return (sUT ,0)P−1
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Prange Algorithm
input: H ∈ {0,1}(n−k)×n, s ∈ {0,1}n−k , integer w > 0
output: e ∈ {0,1}n such that eHT = s and wt(e) = w

repeat:
pick a permutation matrix P

compute UHP =

1

1

@
@@

(Gaussian elimination)

if wt(sUT ) = w then return (sUT ,0)P−1

Each iteration costs about n(n − k) column operations
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Prange Algorithm
input: H ∈ {0,1}(n−k)×n, s ∈ {0,1}n−k , integer w > 0
output: e ∈ {0,1}n such that eHT = s and wt(e) = w

repeat:
pick a permutation matrix P

compute UHP =

1

1

@
@@

(Gaussian elimination)

if wt(sUT ) = w then return (sUT ,0)P−1

Each iteration costs about n(n − k) column operations

Repeat until a solution has its non-zero coordinates “all left”

2



3. Message Attack (ISD)
1. From Generic Decoding to Syndrome Decoding
2. Combinatorial Solutions: Exhaustive Search and Birthday Decoding
3. Information Set Decoding: the Power of Linear Algebra
4. Complexity Analysis
5. Lee and Brickell Algorithm
6. Stern/Dumer Algorithm
7. May, Meurer, and Thomae Algorithm
8. Becker, Joux, May, and Meurer Algorithm
9. Generalized Birthday Algorithm for Decoding

10. Decoding One Out of Many
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ISD – Complexity Analysis

We will refer to Information Set Decoding (ISD) to designate is a family of
algorithms similar to Prange algorithm

All variants of Information Set Decoding repeat a (large) number of times an
independent iteration which has
• a constant (expected) cost K
• a success probability P

→ an expected number of iteration N = 1/P
The workfactor is N · K

1



ISD – One Solution or All Solutions?

We consider the problem CSD(H, s,w) with H ∈ {0,1}(n−k)×n and s ∈ {0,1}n−k

We assume that CSD(H, s,w) 6= ∅ (i.e. s ∈ {eHT | wt(e) = w})

→ there is always at least one solution

1. If
(n

w

)
< 2n−k (i.e. w < τGV) there is exactly one solution

2. If
(n

w

)
> 2n−k (i.e. w > τGV) there are

(n
w

)
/2n−k solutions (on average)

First case (the most common)→ no difference

Second case→ finding only one solution should be easier

(intuitively by a factor
(n

w

)
/2n−k )

2
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ISD – Probabilities

ISD performs many independent iterations. For one iteration, we denote

• P∞ the probability to find one specific element of CSD(H, s,w)

• P1 the probability to find any one element of CSD(H, s,w)

If N = |CSD(H, s,w)|, we have

P1 = 1− (1− P∞)N ≈ min(1,NP∞) up to a small constant factor

or simply P1 = NP∞ if N is not too large (which corresponds to intuition)

For the complexity analysis, there are two situations
• “w < τGV” or “w > τGV and we want all solutions”
→ we expect to execute N∞ = 1/P∞ iterations
• “w > τGV and we want only one solution”

→ we expect to execute N1 = N∞/N = 2n−k

(n
w)P∞

iterations

3
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Prange Algorithm – Complexity Analysis

An error pattern is found if it has the following form e =

n − k-� k -�

weight w 0 0

It follows that P∞ =

(n−k
w

)(n
w

) and P1 =

(n−k
w

)
min(2n−k ,

(n
w

)
)

K = n(n − k) column operations (the Gaussian elimination dominates)

Total workfactor is

• for all solutions WFPrange = n(n − k)

(n
w

)(n−k
w

)
• for one solution n(n − k)

min(2n−k ,
(n

w

)
)(n−k

w

)
indeed the values are identical when

(n
w

)
< 2n−k
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) and P1 =
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w

)
min(2n−k ,

(n
w

)
)

K = n(n − k) column operations (the Gaussian elimination dominates)
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Lee and Brickell Algorithm
Idea: relax Prange algorithm to amortize the cost of the Gaussian elimination
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Lee and Brickell Algorithm
Idea: relax Prange algorithm to amortize the cost of the Gaussian elimination

Allow error patterns of the form e =

n − k -� k -�

weight w − p weight p

At each iteration, we try the
(k

p

)
possible values for the right hand side block

(Prange Algorithm corresponds to p = 0)
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Lee and Brickell Algorithm
Idea: relax Prange algorithm to amortize the cost of the Gaussian elimination

input: H ∈ {0,1}(n−k)×n, s ∈ {0,1}n−k , integer w > 0, a parameter p, 0 ≤ p ≤ w
output: e ∈ {0,1}n such that eHT = s and wt(e) = w
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Lee and Brickell Algorithm
Idea: relax Prange algorithm to amortize the cost of the Gaussian elimination

input: H ∈ {0,1}(n−k)×n, s ∈ {0,1}n−k , integer w > 0, a parameter p, 0 ≤ p ≤ w
output: e ∈ {0,1}n such that eHT = s and wt(e) = w

repeat:
pick a permutation matrix P
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Lee and Brickell Algorithm
Idea: relax Prange algorithm to amortize the cost of the Gaussian elimination

input: H ∈ {0,1}(n−k)×n, s ∈ {0,1}n−k , integer w > 0, a parameter p, 0 ≤ p ≤ w
output: e ∈ {0,1}n such that eHT = s and wt(e) = w

repeat:
pick a permutation matrix P

compute UHP =

1

1

H ′@
@@

(Gaussian elimination)
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Lee and Brickell Algorithm
Idea: relax Prange algorithm to amortize the cost of the Gaussian elimination

input: H ∈ {0,1}(n−k)×n, s ∈ {0,1}n−k , integer w > 0, a parameter p, 0 ≤ p ≤ w
output: e ∈ {0,1}n such that eHT = s and wt(e) = w

repeat:
pick a permutation matrix P

compute UHP =

1

1

H ′@
@@

(Gaussian elimination)

enumerate L = {sUT + e′H ′T | wt(e′) = p}
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Lee and Brickell Algorithm
Idea: relax Prange algorithm to amortize the cost of the Gaussian elimination

input: H ∈ {0,1}(n−k)×n, s ∈ {0,1}n−k , integer w > 0, a parameter p, 0 ≤ p ≤ w
output: e ∈ {0,1}n such that eHT = s and wt(e) = w

repeat:
pick a permutation matrix P

compute UHP =

1

1

H ′@
@@

(Gaussian elimination)

enumerate L = {sUT + e′H ′T | wt(e′) = p}
if s′ ∈ L has weight w − p then return (s′,e′)P−1
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Lee and Brickell Algorithm
Idea: relax Prange algorithm to amortize the cost of the Gaussian elimination

input: H ∈ {0,1}(n−k)×n, s ∈ {0,1}n−k , integer w > 0, a parameter p, 0 ≤ p ≤ w
output: e ∈ {0,1}n such that eHT = s and wt(e) = w

repeat:
pick a permutation matrix P

compute UHP =

1

1

H ′@
@@

(Gaussian elimination)

enumerate L = {sUT + e′H ′T | wt(e′) = p}
if s′ ∈ L has weight w − p then return (s′,e′)P−1

K = n(n − k) +
(k

p

)
(Gaussian elimination + enumeration)
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Lee and Brickell Algorithm – Complexity Analysis

For an error pattern e =

n − k -� k -�

weight w − p weight p , we have P∞ =

(n−k
w−p

)(k
p

)(n
w

)

N∞ =

(n
w

)(n−k
w−p

)(k
p

) and K = n(n − k) +
(k

p

)
Never gains more than a polynomial factor over Prange algorithm

WFLB(p) = N∞ · K =

(n
w

)(n−k
w−p

) (1 + n(n−k)(k
p

) ) >

(n
w

)(n−k
w−p

) > (n
w

)(n−k
w

) = 1
n(n−k)WFPrange

Except for extravagant parameters, p = 2 is optimal
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3. Message Attack (ISD)
1. From Generic Decoding to Syndrome Decoding
2. Combinatorial Solutions: Exhaustive Search and Birthday Decoding
3. Information Set Decoding: the Power of Linear Algebra
4. Complexity Analysis
5. Lee and Brickell Algorithm
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7. May, Meurer, and Thomae Algorithm
8. Becker, Joux, May, and Meurer Algorithm
9. Generalized Birthday Algorithm for Decoding
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Stern Algorithm – Dumer Algorithm
Idea: combine Lee & Brickell algorithm and birthday decoding

UHP = sUT =

-� k + `

6

?

n − k − `

6
?
` s′

s′′

H ′

H ′′

w − p p

1

1

0

@@
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Stern Algorithm – Dumer Algorithm
Idea: combine Lee & Brickell algorithm and birthday decoding

UHP = sUT =

-� k + `

6

?

n − k − `

6
?
` s′

s′′

H ′

H ′′

w − p p

1

1

0

@@

Step 2

Step 1

Step 1: Find all e′ ∈ CSD(H ′, s′,p)
Step 2: Check wt(e′H ′′T + s′′) = w − p
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Step 1: Find all e′ ∈ CSD(H ′, s′,p)
Step 2: Check wt(e′H ′′T + s′′) = w − p

If step 1 is solved by enumeration→ similar to Lee & Brickell
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Stern Algorithm – Dumer Algorithm
Idea: combine Lee & Brickell algorithm and birthday decoding

UHP = sUT =

-� k + `

6

?

n − k − `

6
?
` s′

s′′

H ′

H ′′

w − p p

1

1

0

@@

Step 2

Step 1

Step 1: Find all e′ ∈ CSD(H ′, s′,p)
Step 2: Check wt(e′H ′′T + s′′) = w − p

If step 1 is solved by enumeration→ similar to Lee & Brickell

If step 1 is solved by birthday decoding→ Dumer Algorithm
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Dumer Algorithm
input: H ∈ {0,1}(n−k)×n, s ∈ {0,1}n−k , integer w > 0, two parameters p and `
output: e ∈ {0,1}n such that eHT = s and wt(e) = w
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Dumer Algorithm
input: H ∈ {0,1}(n−k)×n, s ∈ {0,1}n−k , integer w > 0, two parameters p and `
output: e ∈ {0,1}n such that eHT = s and wt(e) = w
repeat:

pick a permutation matrix P
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Dumer Algorithm
input: H ∈ {0,1}(n−k)×n, s ∈ {0,1}n−k , integer w > 0, two parameters p and `
output: e ∈ {0,1}n such that eHT = s and wt(e) = w
repeat:

pick a permutation matrix P
compute U,H ′,H ′′, s′, s′′

sUT =
s′

s′′

UHP =
6
?
`H ′

H ′′
1

1
0

@@
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Dumer Algorithm
input: H ∈ {0,1}(n−k)×n, s ∈ {0,1}n−k , integer w > 0, two parameters p and `
output: e ∈ {0,1}n such that eHT = s and wt(e) = w
repeat:

pick a permutation matrix P
compute U,H ′,H ′′, s′, s′′

solve CSD(H ′, s′,p) (birthday decoding)

sUT =
s′

s′′

UHP =
6
?
`H ′

H ′′
1

1
0

@@
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Dumer Algorithm
input: H ∈ {0,1}(n−k)×n, s ∈ {0,1}n−k , integer w > 0, two parameters p and `
output: e ∈ {0,1}n such that eHT = s and wt(e) = w
repeat:

pick a permutation matrix P
compute U,H ′,H ′′, s′, s′′

solve CSD(H ′, s′,p) (birthday decoding)
for all e′ ∈ CSD(H ′, s′,p)

e′′ ← e′H ′′T + s′′

if wt(e′′) = w − p
return (e′′,e′)P

e′′ e′
w − p p

sUT =
s′

s′′

UHP =
6
?
`H ′

H ′′
1

1
0

@@
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Dumer Algorithm
input: H ∈ {0,1}(n−k)×n, s ∈ {0,1}n−k , integer w > 0, two parameters p and `
output: e ∈ {0,1}n such that eHT = s and wt(e) = w
repeat:

pick a permutation matrix P
compute U,H ′,H ′′, s′, s′′

solve CSD(H ′, s′,p) (birthday decoding)
for all e′ ∈ CSD(H ′, s′,p)

e′′ ← e′H ′′T + s′′

if wt(e′′) = w − p
return (e′′,e′)P

e′′ e′
w − p p

sUT =
s′

s′′

UHP =
6
?
`H ′

H ′′
1

1
0

@@

Note: Stern’s algorithm (1989) was the first to use birthday
decoding, Dumer’s algorithm (1991) is only marginally better
We will refer now to the Stern/Dumer Algorithm
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Stern/Dumer Algorithm – Complexity Analysis (1/2)

Iteration cost: K = n(n − k − `) + 2
√(k+`

p

)
+

(k+`
p

)
2`

+

(k+`
p

)
2`
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Gaussian elimination
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Stern/Dumer Algorithm – Complexity Analysis (1/2)

Iteration cost: K = n(n − k − `) + 2
√(k+`

p

)
+

(k+`
p

)
2`

+

(k+`
p

)
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���
Gaussian elimination 6

Birthday decoding

@
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Final check
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Stern/Dumer Algorithm – Complexity Analysis (1/2)

In general, we can write

K = K0 · n(n − k − `) + K1 ·
√(k+`

p

)
+ K2 ·

(k+`
p

)
2`

where K0, K1, and K2 are small (implementation dependent) constants

we will set K0 = K1 = K2 = 1 to simplify the formula
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Stern/Dumer Algorithm – Complexity Analysis (1/2)

We will simply write K = n(n − k − `) +
√(k+`

p

)
+

(k+`
p

)
2`

up to a constant factor
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p
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+
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)
2`

up to a constant factor

Success probability: P∞ =
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p
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w−p

)(n
w

) and N∞ =
1
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=
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w
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w−p

)
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To be minimized over p and ` (positive integers)
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Stern/Dumer Algorithm – Complexity Analysis (2/2)

The optimization parameters p and ` grow with the problem parameters (n, k ,w)

WFSD(p, `) =

(n
w

)(n−k−`
w−p

)
n(n − k + `)(k+`

p

) +
1√(k+`

p

) +
1
2`
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Stern/Dumer Algorithm – Complexity Analysis (2/2)

The optimization parameters p and ` grow with the problem parameters (n, k ,w)

For cryptographic parameters, the Gaussian elimination will never dominate
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3. Message Attack (ISD)
1. From Generic Decoding to Syndrome Decoding
2. Combinatorial Solutions: Exhaustive Search and Birthday Decoding
3. Information Set Decoding: the Power of Linear Algebra
4. Complexity Analysis
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10. Decoding One Out of Many
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Improved Birthday Decoding

Idea: Use the “representation technique” (Howgrave-Graham and Joux, 2010)

Let L1 =
{

e1HT
1 | wt(e1) = w

2

}
and L2 =

{
s + e2HT

2 | wt(e2) = w
2

}

H =

-� H1

-�
H2
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Let L1 =
{

e1HT | wt(e1) = w
2

}
and L2 =

{
s + e2HT | wt(e2) = w

2

}
Each e ∈ CSD(H, s,w) “represented”

( w
w/2

)
times as e = e1 + e2 with

e1HT = s + e2HT ∈ L1 ∩ L2
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We may decimate L1 and L2 while keeping the solutions in L1 ∩ L2
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Improved Birthday Decoding

Idea: Use the “representation technique” (Howgrave-Graham and Joux, 2010)

Let L1 =
{

e1HT | wt(e1) = w
2

}
and L2 =

{
s + e2HT | wt(e2) = w

2

}
Each e ∈ CSD(H, s,w) “represented”

( w
w/2

)
times as e = e1 + e2 with

e1HT = s + e2HT ∈ L1 ∩ L2

We may decimate L1 and L2 while keeping the solutions in L1 ∩ L2

For any binary vector, let φr (x) denote the last r bits of x , we define

L1(r) =
{

e1HT | wt(e1) = w
2 , φr (e1HT ) = 0

}
L2(r) =

{
s + e2HT | wt(e2) = w

2 , φr (s + e2HT ) = 0
}
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2

}
Each e ∈ CSD(H, s,w) “represented”

( w
w/2

)
times as e = e1 + e2 with

e1HT = s + e2HT ∈ L1 ∩ L2

We may decimate L1 and L2 while keeping the solutions in L1 ∩ L2

For any binary vector, let φr (x) denote the last r bits of x , we define

L1(r) =
{

e1HT | wt(e1) = w
2 , φr (e1HT ) = 0

}
L2(r) =

{
s + e2HT | wt(e2) = w

2 , φr (s + e2HT ) = 0
}

Claim: if 2r =
( w

w/2

)
then any e ∈ CSD(H, s,w) is

“represented in L1(r) ∩ L2(r)” with probability > 1/2
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first recursive call to CSD
solved by birthday decoding with complexity

√( n
w/2

)
+

( n
w/2

)
2r

for all e1 ∈ CSD(H ′,0,w/2)
x ← e1H ′′T ; T [x ]← T [x ] ∪ {e1}
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B
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B
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��
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��1

Keep the syndromes matching on the first n − k − r bits

There are

(( n
w/2

)
2r

)2
1

2n−k−r such syndromes and as many solutions

for all e1 ∈ CSD(H ′,0,w/2)
x ← e1H ′′T ; T [x ]← T [x ] ∪ {e1}

for all e2 ∈ CSD(H ′, s′,w/2)
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I ← I ∪ {(e1,e2)}
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May, Meurer, and Thomae Algorithm

Idea: Dumer Algorithm with the improved birthday decoding
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Idea: Dumer Algorithm with the improved birthday decoding

UHP =
6

?
`

6?r
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n − k − `

-� k + `

1

1

0

@@Number of iterations N∞ =

(n
w

)(n−k−`
w−p

)(k+`
p

)
Iteration cost

K =((((
(((n(n − k − `) +

��
��

√(k+`
p/2

)
+

(k+`
p

)(k+`−p/2
p/2

) +

(k+`
p

)
2`

(k+`
p/2

)(k+`−p/2
p/2

)
First two terms can be neglected (to be checked a posteriori )
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Workfactor is N∞ · K =
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w
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)
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1
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minimal when the two terms are equal, i.e. 2` =
(k+`

p/2

)
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Idea: Dumer Algorithm with the improved birthday decoding

UHP =
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@@Number of iterations N∞ =
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)(k+`
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)(k+`−p/2
p/2

) +

(k+`
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)(k+`−p/2
p/2

)
WFMMT = min

p

(n
w

)(n−k−`
w−p

)(k+`−p/2
p/2

) with ` = log2
(k+`

p/2

)

Asymptotic gain ≈ 2p/2 compared with Dumer’s algorithm
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3. Message Attack (ISD)
1. From Generic Decoding to Syndrome Decoding
2. Combinatorial Solutions: Exhaustive Search and Birthday Decoding
3. Information Set Decoding: the Power of Linear Algebra
4. Complexity Analysis
5. Lee and Brickell Algorithm
6. Stern/Dumer Algorithm
7. May, Meurer, and Thomae Algorithm
8. Becker, Joux, May, and Meurer Algorithm
9. Generalized Birthday Algorithm for Decoding

10. Decoding One Out of Many
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Further Improvement of Birthday Decoding

L1(r , ε) =
{

e1HT | wt(e1) = w
2 + ε, φr (e1HT ) = 0

}
L2(r , ε) =

{
s + e2HT | wt(e2) = w

2 + ε, φr (s + e2HT ) = 0
}
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e1HT | wt(e1) = w
2 + ε, φr (e1HT ) = 0

}
L2(r , ε) =

{
s + e2HT | wt(e2) = w

2 + ε, φr (s + e2HT ) = 0
}

Idea: two words of weight w
2 and length n are expected to have{

w2

4n non-zero positions in common
a sum of weight w − w2

2n
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Further Improvement of Birthday Decoding

L1(r , ε) =
{

e1HT | wt(e1) = w
2 + ε, φr (e1HT ) = 0

}
L2(r , ε) =

{
s + e2HT | wt(e2) = w

2 + ε, φr (s + e2HT ) = 0
}

Idea: if ε = (w/2+ε)2

n , two words of weight w
2 + ε and length n are expected to have{

ε non-zero positions in common
a sum of weight w

Note also that there are
( w

w/2

)(n−w
ε

)
different ways to write

e = e1 + e2 with wt(e) = w and wt(e1) = wt(e2) = w
2 + ε
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Further Improvement of Birthday Decoding

L1(r , ε) =
{

e1HT | wt(e1) = w
2 + ε, φr (e1HT ) = 0

}
L2(r , ε) =

{
s + e2HT | wt(e2) = w

2 + ε, φr (s + e2HT ) = 0
}

Claim: Let 2r =
( w

w/2

)(n−w
ε

)
and ε = (w/2+ε)2

n
Any e ∈ CSD(H, s,w) is “represented in L1(r , ε) ∩ L2(r , ε)” with probability > 1/2

Workfactor “simplifies” to√( n
w/2+ε

)
+

(n
w

)( n
w/2+ε

) +

(n
w

)
2n−k

(up to a polynomial factor)
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Impact on MMT Algorithm Complexity

Instead of

WFMMT = min
p

(n
w

)(n−k−`
w−p

)(k+`−p/2
p/2

) with ` = log2
(k+`

p/2

)
(up to a constant factor)

We set ε = (w/2+ε)2

n , and the workfactor reduces to

WF = min
p

(n
w

)(n−k−`
w−p

)( k+`
p/2+ε

) with ` = log2
( k+`

p/2+ε

)
(up to a polynomial factor)

This is the embryo of the next improvement of ISD
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Becker, Joux, May, and Meurer Algorithm (1/2)

Idea: what happens if we let ε grows (much) beyond w2/4n?

L1(r , ε) =
{

e1HT | wt(e1) = w
2 + ε, φr (e1HT ) = 0

}
L2(r , ε) =

{
s + e2HT | wt(e2) = w

2 + ε, φr (s + e2HT ) = 0
}

The workfactor becomes
√

L +
L
2r +

L2

2n−k+r with L =
( n

w/2+ε

)
and 2r =

( w
w/2

)(n−w
ε

)
We may also write

√
L +

1
µ

(n
w

)
L

+
1
µ

(n
w

)
2n−k

where µ =

(w/2+ε
ε

)(n−w/2−ε
w/2

)( n
w/2+ε

) is the probability that two words

of weight w/2 + ε and length n have a sum of weight w
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BJMM Algorithm (2/2)

BJMM Algorithm, key features:
• increase ε leading to FIBD (Further Improved Birthday Decoding)
• make an additional level of recursive call to FIBD

(improved birthday decoding makes two calls to smaller CSD problems)
• embed all this into Information Set Decoding framework

Improves the workfactor
Algorithm and analysis are very elaborated
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Comparison of the Various ISD Variants

WF = 2c·n(1+o(1))

c a constant
(asymptotic exponent)

c = lim
n→∞

log2 WF
n

k = 0.5n
w = 0.11n

Enumeration 0.5
Birthday Decoding 0.25
Prange 0.1198
Stern 0.1154
Dumer 0.1151
MMT 0.1101
BJMM 0.1000
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Comparison of the Various ISD Variants

WF = 2c·n(1+o(1))

c a constant
(asymptotic exponent)

c = lim
n→∞

log2 WF
n

k = 0.5n k = 0.8n
w = 0.11n w = 0.03n

Enumeration 0.5 0.2
Birthday Decoding 0.25 0.1
Prange 0.1198 0.0724
Stern 0.1154 0.0680
Dumer 0.1151 0.0679
MMT 0.1101 0.0638
BJMM 0.1000 0.0562

Remark that Birthday Decoding is comparatively better when k/n grows
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3. Message Attack (ISD)
1. From Generic Decoding to Syndrome Decoding
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3. Information Set Decoding: the Power of Linear Algebra
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Generalized Birthday Algorithm

Proposed by D. Wagner in 2002, in a more general context

The Generalized Birthday Algorithm (GBA) of order a solves the following problem:

Instance: 2a lists of vectors Li ⊂ {0,1}`, i = 1,2, . . . ,2a

Answer: xi ∈ Li , i = 1,2, . . . ,2a such that x1 + x2 + . . .+ x2a = 0

If the lists are large enough, then GBA runs in time O
(
2`/(a+1))

(the case a = 1 corresponds to the usual birthday paradox)

GBA can be applied to decoding
• it applies to instances of CSD with many solutions
• it aims at finding one solution only
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Birthday Decoding Again

H = H1 H2

s = s1 + s2 arbitrarily

Let H ∈ {0,1}(n−k)×n, s ∈ {0,1}n−k , and w > 0, we consider CSD(H, s,w) where

• there are many solutions: exact condition to be determined
• we only want one solution
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• we only want one solution

We build two lists of size L

Li ⊂ {si + eiHT
i | wt(ei) = w/2}, i ∈ {1,2}

Any element of L1 ∩ L2 provides a solution
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L2
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(
2(n−k)/2)

L cannot exceed
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, and thus we need
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Order 2 GBA for Decoding

H = H1 H2 H3 H4 s = s1 + s2 + s3 + s4

Let Li ⊂ {si + eiHT
i | wt(ei) = w/4}, i ∈ {1,2,3,4} of size L = 2`, ` = (n − k)/3

Let L1,2 ⊂ {x1 + x2 | x1 ∈ Li , x2 ∈ L2, φ`(x1 + x2) = 0} (φ`(x) the last ` bits of x)

We define L3,4 similarly, we expect |L1,2| = |L3,4| = L2/2` = L

We expect |L1,2 ∩ L3,4| =
|L1,2| · |L3,4|

2n−k−` = L4/2n−k+` = 1

After computing L1,L2,L3,L4,L1,2,L3,4 we expect to find an element in L1,2 ∩L3,4
from which we derive a solution to CSD(H, s,w)

The computing effort is O
(
2(n−k)/3) possible only if

(n/4
w/4

)
≥ 2(n−k)/3
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Order a GBA for Decoding

In general the order a GBA decoding will have a cost O
(

2
n−k
a+1

)
It is possible only if

(n/2a

w/2a

)
≥ 2

n−k
a+1

Asymptotically, the condition becomes
(n

w

)
≥ 2

2a
a+1 (n−k) up to a polynomial factor

This reflects the fact that higher order GBA requires higher values of w

Finally, note that improvements of birthday decoding apply

This allows to lower the complexity in some cases
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Comparing GBA and ISD

Information Set Decoding (all variants) and its complexity analysis can easily be
adapted to the case where we seek one solution among many

In practice ISD is almost always more efficient

GBA is more efficient only when the code rate k/n is close to 1 and even then, it is
only better for a limited range of values of w

5



3. Message Attack (ISD)
1. From Generic Decoding to Syndrome Decoding
2. Combinatorial Solutions: Exhaustive Search and Birthday Decoding
3. Information Set Decoding: the Power of Linear Algebra
4. Complexity Analysis
5. Lee and Brickell Algorithm
6. Stern/Dumer Algorithm
7. May, Meurer, and Thomae Algorithm
8. Becker, Joux, May, and Meurer Algorithm
9. Generalized Birthday Algorithm for Decoding

10. Decoding One Out of Many
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Decoding One Out of Many (DOOM)

N-Syndrome Decoding

Instance: S ⊂ {0,1}n−k , |S| = N, H ∈ {0,1}(n−k)×n, an integer w > 0
Answer: e ∈ {0,1}n such that eHT ∈ S and wt(e) ≤ w

We will denote CSDN(H,S,w) the set of all solutions to the above problem

As for CSD1, we will consider solvable instances

Meaning that S ⊂ {eHT | wt(e) = w}

Improvement:
• we get the N solutions at the expense of a factor ≈

√
N

• or we get one solution with a gain of a factor ≈
√

N

1
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Birthday Decoding With Multiple Instances

H =

n1 -� n2 -�

H1 H2

n = n1 + n2, w = w1 + w2

Solve CSDN(H,S,w) with birthday decoding

Let
{
L1 = {e1HT

1 | wt(e1) = w1}
L2 = {s + e2HT

2 | s ∈ S,wt(e2) = w2}

We choose w1 and w2 such that

w1

n1
=

w2

n2
and |L1| =

(
n1

w1

)
= |L2| = N

(
n2

w2

)

Claim: If N ≤
(n

w

)
, we obtain all solutions of CSDN(H,S,w)

for a cost
√

N
(n

w

)
+

N
(n

w

)
2n−k (up to a polynomial factor)

2
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DOOM-ISD

6
?
`

w − p p
H ′

H ′′
1

1
0

@@

Solve CSDN(H,S,w) when S ⊂ {eHT | wt(e) = w} with Dumer Algorithm

The problem has N solutions and we only want one

A specific solution requires N∞ =

(n
w

)(n−k−`
w−p

)(k+`
p

) iterations

For one solution only, we expect N1 = N∞/N iterations as long as N ≤ N∞

Iteration cost: K =
√

N
(k+`

p

)
+

N
(k+`

p

)
2`

as long as N ≤
(k+`

p

)
→ WFDOOM = min

0≤p≤w

(n
w

)(n−k−`
w−p

)√
N
(k+`

p

) with ` = log2

√
N
(k+`

p

)

→ gain of a factor ≈
√

N as long as N ≤ min
(
N∞,

(k+`
p

))
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DOOM-GBA
A gain is also possible with an Order 2 GBA Decoding when N = |S| =

(n/3
w/3

)

H =

n/3 -�

H1

n/3 -�

H2

n/3 -�

H3

Li ⊂ {eiHT
i | wt(ei) = w/3}, i ∈ {1,2,3} and L4 = S

From xi ∈ Li , i ∈ {1,2,3,4} such that x1 + x2 + x3 + x4 = 0 we obtain

e1HT
1 + e2HT

2 + e3HT
3 + s = 0, s ∈ S

and we have e = (e1,e2,e3) ∈ CSDN(H,S,w)

Workfactor is
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3. Message Attack (ISD)
1. From Generic Decoding to Syndrome Decoding
2. Combinatorial Solutions: Exhaustive Search and Birthday Decoding
3. Information Set Decoding: the Power of Linear Algebra
4. Complexity Analysis
5. Lee and Brickell Algorithm
6. Stern/Dumer Algorithm
7. May, Meurer, and Thomae Algorithm
8. Becker, Joux, May, and Meurer Algorithm
9. Generalized Birthday Algorithm for Decoding

10. Decoding One Out of Many
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Code-Based Cryptography

1. Error-Correcting Codes and Cryptography
2. McEliece Cryptosystem
3. Message Attacks (ISD)
4. Key Attacks
5. Other Cryptographic Constructions Relying on Coding Theory
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