
Decoding challenge
Assessing the practical hardness of syndrome
decoding for code-based cryptography

Matthieu Lequesne

Sorbonne Université
Inria Paris, team Cosmiq

February 27, 2020

All you ever wanted to know
about code-based crypto

Public Key Cryptography

... 1011010001101

RSA [1977]

++

[1994]

///////////
???

1 39

Public Key Cryptography

... 1011010001101

RSA [1977]

++

[1994]

///////////
???

1 39

Public Key Cryptography

... 1011010001101

RSA [1977]

++

[1994]

///////////
???

1 39

Public Key Cryptography

... 1011010001101

RSA [1977]

++

[1994]

///////////
???

1 39

Public Key Cryptography

... 1011010001101

RSA [1977]

++

[1994]

///////////
???

1 39

Post-Quantum Cryptography

Post-Quantum Cryptography

Lattice Codes Hash Multivariate Isogenies

1978, Robert McEliece: [McE78]

2 39

Post-Quantum Cryptography

Post-Quantum Cryptography

Lattice Codes Hash Multivariate Isogenies

1978, Robert McEliece: [McE78]

2 39

Error correcting codes

Definition (Code)
An [n, k]Fq linear code C is a linear subspace of Fnq of dimension k.

Definition (Decoder)
A decoder for the code C is a function

ΦC : Fnq → C ∪ {?}.

We say that ΦC can decode up to t errors if

∀c ∈ C,∀e ∈ Fnq, |e| ≤ t ⇒ ΦC(c+ e) = c.

3 39

Error correcting codes

Definition (Generator matrix)
A generator matrix of a code C is a matrix G ∈ Fk×nq such that:

C = {xG | x ∈ Fkq}.

Definition (Parity-check matrix)
A parity-check matrix of a code C is a matrix H ∈ F(n−k)×n

q such
that:

C = {y ∈ Fnq |Hy
ᵀ

= 0}.

4 39

Error correcting codes

Example (Repetition Code)

F2 → F32
0 7→ (0,0,0)
1 7→ (1,1,1)

Example (Decoder)

if |x| <= 1:
return 0

else:
return 1

G =
(
1 1 1

) H =

(
1 1 0
0 1 1

)

5 39

Error correcting codes

Example (Repetition Code)

F2 → F32
0 7→ (0,0,0)
1 7→ (1,1,1)

Example (Decoder)

if |x| <= 1:
return 0

else:
return 1

G =
(
1 1 1

) H =

(
1 1 0
0 1 1

)

5 39

Code-based cryptography

Main idea: how hard is it to decode up to t errors?

For a random code tmedium hard

For some special families
of structured codes t

easy hard

easy = in polynomial time (with trap)
medium / hard = requires exponential time

{

CRYPTO

6 39

Code-based cryptography

Main idea: how hard is it to decode up to t errors?

For a random code tmedium hard

For some special families
of structured codes t

easy hard

easy = in polynomial time (with trap)
medium / hard = requires exponential time

{

CRYPTO

6 39

Code-based cryptography

Main idea: how hard is it to decode up to t errors?

For a random code tmedium hard

For some special families
of structured codes t

easy hard

easy = in polynomial time (with trap)
medium / hard = requires exponential time

{

CRYPTO

6 39

Code-based cryptography

Main idea: how hard is it to decode up to t errors?

For a random code tmedium hard

For some special families
of structured codes t

easy hard

easy = in polynomial time (with trap)
medium / hard = requires exponential time

{

CRYPTO

6 39

Code-based cryptography

Main idea: how hard is it to decode up to t errors?

For a random code tmedium hard

For some special families
of structured codes t

easy hard

easy = in polynomial time (with trap)
medium / hard = requires exponential time

{

CRYPTO

6 39

How to design a code-based cryptosystem?

Ingredients:
a family F of structured codes;
a decoder ΦF that can correct efficiently up to t errors;
a shaker!

Receipe:

KeyGen()
Gsk

$←− F
Gpk ← Shake(Gsk)

Enc(m)
e $←− Fnq, s.t. |e| = t
c← mGpk + e

Dec(c)

m← ΦF (Gsk, c)

The key to success:
choose t s.t. it is hard to decode t errors for a random code;
ΦF needs the structured version of the code to be efficient;
the shaker shakes well enough!

7 39

How to design a code-based cryptosystem?

Ingredients:
a family F of structured codes;

a decoder ΦF that can correct efficiently up to t errors;
a shaker!

Receipe:

KeyGen()
Gsk

$←− F
Gpk ← Shake(Gsk)

Enc(m)
e $←− Fnq, s.t. |e| = t
c← mGpk + e

Dec(c)

m← ΦF (Gsk, c)

The key to success:
choose t s.t. it is hard to decode t errors for a random code;
ΦF needs the structured version of the code to be efficient;
the shaker shakes well enough!

7 39

How to design a code-based cryptosystem?

Ingredients:
a family F of structured codes;
a decoder ΦF that can correct efficiently up to t errors;

a shaker!

Receipe:

KeyGen()
Gsk

$←− F
Gpk ← Shake(Gsk)

Enc(m)
e $←− Fnq, s.t. |e| = t
c← mGpk + e

Dec(c)

m← ΦF (Gsk, c)

The key to success:
choose t s.t. it is hard to decode t errors for a random code;
ΦF needs the structured version of the code to be efficient;
the shaker shakes well enough!

7 39

How to design a code-based cryptosystem?

Ingredients:
a family F of structured codes;
a decoder ΦF that can correct efficiently up to t errors;
a shaker!

Receipe:

KeyGen()
Gsk

$←− F
Gpk ← Shake(Gsk)

Enc(m)
e $←− Fnq, s.t. |e| = t
c← mGpk + e

Dec(c)

m← ΦF (Gsk, c)

The key to success:
choose t s.t. it is hard to decode t errors for a random code;
ΦF needs the structured version of the code to be efficient;
the shaker shakes well enough!

7 39

How to design a code-based cryptosystem?

Ingredients:
a family F of structured codes;
a decoder ΦF that can correct efficiently up to t errors;
a shaker!

Receipe:

KeyGen()
Gsk

$←− F
Gpk ← Shake(Gsk)

Enc(m)
e $←− Fnq, s.t. |e| = t
c← mGpk + e

Dec(c)

m← ΦF (Gsk, c)

The key to success:
choose t s.t. it is hard to decode t errors for a random code;
ΦF needs the structured version of the code to be efficient;
the shaker shakes well enough!

7 39

How to design a code-based cryptosystem?

Ingredients:
a family F of structured codes;
a decoder ΦF that can correct efficiently up to t errors;
a shaker!

Receipe:

KeyGen()
Gsk

$←− F
Gpk ← Shake(Gsk)

Enc(m)
e $←− Fnq, s.t. |e| = t
c← mGpk + e

Dec(c)

m← ΦF (Gsk, c)

The key to success:
choose t s.t. it is hard to decode t errors for a random code;

ΦF needs the structured version of the code to be efficient;
the shaker shakes well enough!

7 39

How to design a code-based cryptosystem?

Ingredients:
a family F of structured codes;
a decoder ΦF that can correct efficiently up to t errors;
a shaker!

Receipe:

KeyGen()
Gsk

$←− F
Gpk ← Shake(Gsk)

Enc(m)
e $←− Fnq, s.t. |e| = t
c← mGpk + e

Dec(c)

m← ΦF (Gsk, c)

The key to success:
choose t s.t. it is hard to decode t errors for a random code;
ΦF needs the structured version of the code to be efficient;

the shaker shakes well enough!

7 39

How to design a code-based cryptosystem?

Ingredients:
a family F of structured codes;
a decoder ΦF that can correct efficiently up to t errors;
a shaker!

Receipe:

KeyGen()
Gsk

$←− F
Gpk ← Shake(Gsk)

Enc(m)
e $←− Fnq, s.t. |e| = t
c← mGpk + e

Dec(c)

m← ΦF (Gsk, c)

The key to success:
choose t s.t. it is hard to decode t errors for a random code;
ΦF needs the structured version of the code to be efficient;
the shaker shakes well enough!

7 39

Security hypothesis

How could Eve break this scheme? 2 possibilities:

1. Reconstruct Gsk from Gpk and then use ΦF to decode.

Security hypothesis 1
Gpk is indistinguishable from a random k× n matrix.

2. Decode using Gpk.

Security hypothesis 2
Decoding t errors in a random [n, k]-code is hard.

Remark: Hypothesis 1 depends on the choice of the family of
codes F and the shaker, while Hypothesis 2 is generic!

8 39

Security hypothesis

How could Eve break this scheme? 2 possibilities:

1. Reconstruct Gsk from Gpk and then use ΦF to decode.

Security hypothesis 1
Gpk is indistinguishable from a random k× n matrix.

2. Decode using Gpk.

Security hypothesis 2
Decoding t errors in a random [n, k]-code is hard.

Remark: Hypothesis 1 depends on the choice of the family of
codes F and the shaker, while Hypothesis 2 is generic!

8 39

Security hypothesis

How could Eve break this scheme? 2 possibilities:

1. Reconstruct Gsk from Gpk and then use ΦF to decode.

Security hypothesis 1
Gpk is indistinguishable from a random k× n matrix.

2. Decode using Gpk.

Security hypothesis 2
Decoding t errors in a random [n, k]-code is hard.

Remark: Hypothesis 1 depends on the choice of the family of
codes F and the shaker, while Hypothesis 2 is generic!

8 39

Security hypothesis

How could Eve break this scheme? 2 possibilities:

1. Reconstruct Gsk from Gpk and then use ΦF to decode.

Security hypothesis 1
Gpk is indistinguishable from a random k× n matrix.

2. Decode using Gpk.

Security hypothesis 2
Decoding t errors in a random [n, k]-code is hard.

Remark: Hypothesis 1 depends on the choice of the family of
codes F and the shaker, while Hypothesis 2 is generic!

8 39

Security hypothesis

How could Eve break this scheme? 2 possibilities:

1. Reconstruct Gsk from Gpk and then use ΦF to decode.

Security hypothesis 1
Gpk is indistinguishable from a random k× n matrix.

2. Decode using Gpk.

Security hypothesis 2
Decoding t errors in a random [n, k]-code is hard.

Remark: Hypothesis 1 depends on the choice of the family of
codes F and the shaker, while Hypothesis 2 is generic!

8 39

Some examples

Examples of choices of F :
I Goppa codes [Original McEliece];
I Reed Solomon codes [Nie86] (broken by [SS92]);
I QC-MDPC codes [BIKE];
I Rank-based codes [ROLLO].

Examples of shakers:
I row scrambler;
I columns isometry (permutation);
I subfield subcode;
I adding random columns...

9 39

Some examples

Examples of choices of F :
I Goppa codes [Original McEliece];
I Reed Solomon codes [Nie86] (broken by [SS92]);
I QC-MDPC codes [BIKE];
I Rank-based codes [ROLLO].

Examples of shakers:
I row scrambler;
I columns isometry (permutation);
I subfield subcode;
I adding random columns...

9 39

Syndrome Decoding

Syndrome decoding

Let C be an [n, k] linear code of parity-check matrix H.
Let y ∈ Fnq and s = yHᵀ ∈ Fkq (the syndrome of y).
The following problems are equivalent.

1. Find a codeword x ∈ C such that |y − x| ≤ t.
2. Find an error e ∈ y + C such that |e| ≤ t.
3. Find an error e such that eHᵀ

= s and |e| ≤ t.

The Syndrome Decoding Problem - SD(q,n,R,W)

Instance: H ∈ F(n−k)×n
q ,

s ∈ Fn−kq .
Output: e ∈ Fnq such that |e| = w and eHᵀ

= s,
where k 4=dRne, w 4=dWne.

10 39

Syndrome decoding

Let C be an [n, k] linear code of parity-check matrix H.
Let y ∈ Fnq and s = yHᵀ ∈ Fkq (the syndrome of y).
The following problems are equivalent.

1. Find a codeword x ∈ C such that |y − x| ≤ t.

2. Find an error e ∈ y + C such that |e| ≤ t.
3. Find an error e such that eHᵀ

= s and |e| ≤ t.

The Syndrome Decoding Problem - SD(q,n,R,W)

Instance: H ∈ F(n−k)×n
q ,

s ∈ Fn−kq .
Output: e ∈ Fnq such that |e| = w and eHᵀ

= s,
where k 4=dRne, w 4=dWne.

10 39

Syndrome decoding

Let C be an [n, k] linear code of parity-check matrix H.
Let y ∈ Fnq and s = yHᵀ ∈ Fkq (the syndrome of y).
The following problems are equivalent.

1. Find a codeword x ∈ C such that |y − x| ≤ t.
2. Find an error e ∈ y + C such that |e| ≤ t.

3. Find an error e such that eHᵀ
= s and |e| ≤ t.

The Syndrome Decoding Problem - SD(q,n,R,W)

Instance: H ∈ F(n−k)×n
q ,

s ∈ Fn−kq .
Output: e ∈ Fnq such that |e| = w and eHᵀ

= s,
where k 4=dRne, w 4=dWne.

10 39

Syndrome decoding

Let C be an [n, k] linear code of parity-check matrix H.
Let y ∈ Fnq and s = yHᵀ ∈ Fkq (the syndrome of y).
The following problems are equivalent.

1. Find a codeword x ∈ C such that |y − x| ≤ t.
2. Find an error e ∈ y + C such that |e| ≤ t.
3. Find an error e such that eHᵀ

= s and |e| ≤ t.

The Syndrome Decoding Problem - SD(q,n,R,W)

Instance: H ∈ F(n−k)×n
q ,

s ∈ Fn−kq .
Output: e ∈ Fnq such that |e| = w and eHᵀ

= s,
where k 4=dRne, w 4=dWne.

10 39

Syndrome decoding

Let C be an [n, k] linear code of parity-check matrix H.
Let y ∈ Fnq and s = yHᵀ ∈ Fkq (the syndrome of y).
The following problems are equivalent.

1. Find a codeword x ∈ C such that |y − x| ≤ t.
2. Find an error e ∈ y + C such that |e| ≤ t.
3. Find an error e such that eHᵀ

= s and |e| ≤ t.

The Syndrome Decoding Problem - SD(q,n,R,W)

Instance: H ∈ F(n−k)×n
q ,

s ∈ Fn−kq .
Output: e ∈ Fnq such that |e| = w and eHᵀ

= s,
where k 4=dRne, w 4=dWne.

10 39

Complexity

Theorem (NP-completeness)
The Syndrome Decoding problem is NP-complete. [BMvT78]

Conjecture (average case)
Decoding nε errors is hard on average ∀ε > 0. [Ale11]

11 39

Complexity

Theorem (NP-completeness)
The Syndrome Decoding problem is NP-complete. [BMvT78]

Conjecture (average case)
Decoding nε errors is hard on average ∀ε > 0. [Ale11]

11 39

Binary Syndrome Decoding Problem

From now on, we focus on the binary case q = 2.

e = Hamming weight w

H = s =

-� n

6

?

n− k

Find w columns of H adding to s

The next slides of this section are reproduced from Nicolas Sendrier’s
MOOC “Code Based Cryptography” with his authorization.

12 39

Binary Syndrome Decoding Problem

From now on, we focus on the binary case q = 2.

e = Hamming weight w

H = s =

-� n

6

?

n− k

Find w columns of H adding to s

The next slides of this section are reproduced from Nicolas Sendrier’s
MOOC “Code Based Cryptography” with his authorization.

12 39

Binary Syndrome Decoding Problem

From now on, we focus on the binary case q = 2.

e = Hamming weight w

H = s =

-� n

6

?

n− k

Find w columns of H adding to s

The next slides of this section are reproduced from Nicolas Sendrier’s
MOOC “Code Based Cryptography” with his authorization.

12 39

Number of solutions

Fix n and k, let w grow:

-
0

w

dGV
4
= Gilbert-Varshamov radius, s.t.

(n
dGV

)
= 2n−k.

In cryptanalysis, we only consider situations where there is a
solution.

We expect ≈ max
(
1,
(n
w
)
/2n−k

)
solutions.

13 39

Number of solutions

Fix n and k, let w grow:

-

-
(n
w
)

2n−k
solutions on average

0
w

dGV
4
= Gilbert-Varshamov radius, s.t.

(n
dGV

)
= 2n−k.

In cryptanalysis, we only consider situations where there is a
solution.

We expect ≈ max
(
1,
(n
w
)
/2n−k

)
solutions.

13 39

Number of solutions

Fix n and k, let w grow:

-

�at most one solution -
(n
w
)

2n−k
solutions on average

0
w

dGV
4
= Gilbert-Varshamov radius, s.t.

(n
dGV

)
= 2n−k.

In cryptanalysis, we only consider situations where there is a
solution.

We expect ≈ max
(
1,
(n
w
)
/2n−k

)
solutions.

13 39

Number of solutions

Fix n and k, let w grow:

-

�at most one solution -
(n
w
)

2n−k
solutions on average

0 dGV
w

dGV
4
= Gilbert-Varshamov radius, s.t.

(n
dGV

)
= 2n−k.

In cryptanalysis, we only consider situations where there is a
solution.

We expect ≈ max
(
1,
(n
w
)
/2n−k

)
solutions.

13 39

Number of solutions

Fix n and k, let w grow:

-

�exactly
((((at most one solution -

(n
w
)

2n−k
solutions on average

0 dGV
w

dGV
4
= Gilbert-Varshamov radius, s.t.

(n
dGV

)
= 2n−k.

In cryptanalysis, we only consider situations where there is a
solution.

We expect ≈ max
(
1,
(n
w
)
/2n−k

)
solutions.

13 39

Number of solutions

Fix n and k, let w grow:

-

�exactly
((((at most one solution -

(n
w
)

2n−k
solutions on average

0 dGV
w

dGV
4
= Gilbert-Varshamov radius, s.t.

(n
dGV

)
= 2n−k.

In cryptanalysis, we only consider situations where there is a
solution.

We expect ≈ max
(
1,
(n
w
)
/2n−k

)
solutions.

13 39

Exhaustive search

Problem:
find w columns of H
adding to s (modulo 2)

H = h1 h2 · · · hn s =

-� n
6

?

n− k

Enumerate all w-tuples (j1, j2, · · · , jw) such that

1 ≤ j1 < j2 < . . . < jw ≤ n.

Check whether
s+ hj1 + hj2 · · · + hjw = 0.

Cost: about
(
n
w

)
column operations.

Remark: we obtain all solutions.

14 39

Exhaustive search

Problem:
find w columns of H
adding to s (modulo 2)

H = h1 h2 · · · hn s =

-� n
6

?

n− k

Enumerate all w-tuples (j1, j2, · · · , jw) such that

1 ≤ j1 < j2 < . . . < jw ≤ n.

Check whether
s+ hj1 + hj2 · · · + hjw = 0.

Cost: about
(
n
w

)
column operations.

Remark: we obtain all solutions.

14 39

Exhaustive search

Problem:
find w columns of H
adding to s (modulo 2)

H = h1 h2 · · · hn s =

-� n
6

?

n− k

Enumerate all w-tuples (j1, j2, · · · , jw) such that

1 ≤ j1 < j2 < . . . < jw ≤ n.

Check whether
s+ hj1 + hj2 · · · + hjw = 0.

Cost: about
(
n
w

)
column operations.

Remark: we obtain all solutions.

14 39

Birthday algorithm

Problem:
find w columns of H
adding to s (modulo 2)

H = H1 H2 s =

-� n
6

?

n− k

Idea: Split H into two equal parts and enumerate the two
following sets

L1 =
{
e1HT1 , |e1| =

w
2

}
and L2 =

{
s+ e2HT2 , |e2| =

w
2

}
If L1 ∩ L2 6= ∅, we have solution(s): s+ e1HT1 + e2HT2 = 0

Cost: Requires about 2L+ L2/2n−k column operations,
where L = |L1| = |L2|

15 39

Birthday algorithm

Problem:
find w columns of H
adding to s (modulo 2)

H = H1 H2 s =

-� n
6

?

n− k

Idea: Split H into two equal parts and enumerate the two
following sets

L1 =
{
e1HT1 , |e1| =

w
2

}
and L2 =

{
s+ e2HT2 , |e2| =

w
2

}
If L1 ∩ L2 6= ∅, we have solution(s): s+ e1HT1 + e2HT2 = 0

Cost: Requires about 2L+ L2/2n−k column operations,
where L = |L1| = |L2|

15 39

Birthday algorithm

Problem:
find w columns of H
adding to s (modulo 2)

H = H1 H2 s =

-� n
6

?

n− k

Idea: Split H into two equal parts and enumerate the two
following sets

L1 =
{
e1HT1 , |e1| =

w
2

}
and L2 =

{
s+ e2HT2 , |e2| =

w
2

}
If L1 ∩ L2 6= ∅, we have solution(s): s+ e1HT1 + e2HT2 = 0

Cost: Requires about 2L+ L2/2n−k column operations,
where L = |L1| = |L2|

15 39

Birthday algorithm

Compute L1 ∩ L2 =
{
e1HT1 | |(|e1) = w

2
}
∩
{
s+ e2HT2 | |(|e2) = w

2
}

H = H1 H2

-� n

s
6

?

n− k

Total cost: +

(n/2
w/2
)2

2n−k

|L1| |L2| |L1|·|L2|
2n−k

for all e1 of weight w/2
x← e1HT1

; T[x]← T[x] ∪ {e1}
for all e2 of weight w/2

x← s+ e2HT2

for all e1 ∈ T[x]
I ← I ∪ {(e1, e2)}

return I

16 39

Birthday algorithm

Compute L1 ∩ L2 =
{
e1HT1 | |(|e1) = w

2
}
∩
{
s+ e2HT2 | |(|e2) = w

2
}

H = H1 H2

-� n

s
6

?

n− k

Total cost:
(n/2
w/2
)

+

(n/2
w/2
)2

2n−k

|L1|

|L2| |L1|·|L2|
2n−k

for all e1 of weight w/2
x← e1HT1 ; T[x]← T[x] ∪ {e1}

for all e2 of weight w/2
x← s+ e2HT2

for all e1 ∈ T[x]
I ← I ∪ {(e1, e2)}

return I

16 39

Birthday algorithm

Compute L1 ∩ L2 =
{
e1HT1 | |(|e1) = w

2
}
∩
{
s+ e2HT2 | |(|e2) = w

2
}

H = H1 H2

-� n

s
6

?

n− k

Total cost:
(n/2
w/2
)

+
(n/2
w/2
)

+

(n/2
w/2
)2

2n−k

|L1| |L2|

|L1|·|L2|
2n−k

for all e1 of weight w/2
x← e1HT1 ; T[x]← T[x] ∪ {e1}

for all e2 of weight w/2
x← s+ e2HT2

for all e1 ∈ T[x]
I ← I ∪ {(e1, e2)}

return I

16 39

Birthday algorithm

Compute L1 ∩ L2 =
{
e1HT1 | |(|e1) = w

2
}
∩
{
s+ e2HT2 | |(|e2) = w

2
}

H = H1 H2

-� n

s
6

?

n− k

Total cost:
(n/2
w/2
)

+
(n/2
w/2
)

+

(n/2
w/2
)2

2n−k

|L1| |L2| |L1|·|L2|
2n−k

for all e1 of weight w/2
x← e1HT1 ; T[x]← T[x] ∪ {e1}

for all e2 of weight w/2
x← s+ e2HT2
for all e1 ∈ T[x]
I ← I ∪ {(e1, e2)}

return I

16 39

Birthday algorithm

Compute L1 ∩ L2 =
{
e1HT1 | |(|e1) = w

2
}
∩
{
s+ e2HT2 | |(|e2) = w

2
}

H = H1 H2

-� n

s
6

?

n− k

Total cost:
(n/2
w/2
)

+
(n/2
w/2
)

+

(n/2
w/2
)2

2n−k

|L1| |L2| |L1|·|L2|
2n−k

for all e1 of weight w/2
x← e1HT1 ; T[x]← T[x] ∪ {e1}

for all e2 of weight w/2
x← s+ e2HT2
for all e1 ∈ T[x]
I ← I ∪ {(e1, e2)}

return I

16 39

Birthday algorithm

One particular error of Hamming weight w splits evenly with
probability

P =

(n/2
w/2
)2(n

w
)

We may have to repeat with H divided in several different ways

or more generally by picking the two halves randomly

Repeat 1/P times to get most solutions. Cost: O
(√(n

w
))

.

17 39

Birthday algorithm

One particular error of Hamming weight w splits evenly with
probability

P =

(n/2
w/2
)2(n

w
)

We may have to repeat with H divided in several different ways

or more generally by picking the two halves randomly

Repeat 1/P times to get most solutions. Cost: O
(√(n

w
))

.

17 39

Birthday algorithm

One particular error of Hamming weight w splits evenly with
probability

P =

(n/2
w/2
)2(n

w
)

We may have to repeat with H divided in several different ways

or more generally by picking the two halves randomly

Repeat 1/P times to get most solutions. Cost: O
(√(n

w
))

.

17 39

The power of linear algebra

Until here, we have not used linear algebra!

For any invertible U ∈ {0, 1}(n−k)×(n−k) and any permutation
matrix P ∈ {0, 1}n×n

(
eHT = s

)
⇔
(
e′H′T = s′

)
where


H′ ← UHP
s′ ← sUT
e′ ← eP.

Proof: e′H′T = (eP)(UHP)T

= (eP)PTHTUT
= eHTUT
= sUT
= s′.

18 39

The power of linear algebra

Until here, we have not used linear algebra!

For any invertible U ∈ {0, 1}(n−k)×(n−k) and any permutation
matrix P ∈ {0, 1}n×n

(
eHT = s

)
⇔
(
e′H′T = s′

)
where


H′ ← UHP
s′ ← sUT
e′ ← eP.

Proof: e′H′T = (eP)(UHP)T

= (eP)PTHTUT
= eHTUT
= sUT
= s′.

18 39

The power of linear algebra

Until here, we have not used linear algebra!

For any invertible U ∈ {0, 1}(n−k)×(n−k) and any permutation
matrix P ∈ {0, 1}n×n

(
eHT = s

)
⇔
(
e′H′T = s′

)
where


H′ ← UHP
s′ ← sUT
e′ ← eP.

Proof: e′H′T = (eP)(UHP)T

= (eP)PTHTUT
= eHTUT
= sUT
= s′.

18 39

Prange’s algorithm

Idea: Perform a Gaussian Elimination and hope that all the
errors are in positions corresponding to the identity part!

H′ = UHP =

1

1
and s′ = sUT =

@
@@

e′ = eP = 0 0

19 39

Prange’s algorithm

Idea: Perform a Gaussian Elimination and hope that all the
errors are in positions corresponding to the identity part!

H′ = UHP =

1

1
and s′ = sUT =

@
@@

possible if the first n−k columns
of HP are independent

H
HHY

︸ ︷︷ ︸
n− k

e′ = eP = 0 0

19 39

Prange’s algorithm

Idea: Perform a Gaussian Elimination and hope that all the
errors are in positions corresponding to the identity part!

H′ = UHP =

1

1
and s′ = sUT =

@
@@

e′ = eP = weight w 0 0

19 39

Prange’s algorithm

Idea: Perform a Gaussian Elimination and hope that all the
errors are in positions corresponding to the identity part!

H′ = UHP =

1

1
and s′ = sUT =

@
@@

e′ = eP = s′ 0 0

19 39

Prange’s algorithm

REPEAT:
1- Pick a permutation matrix P

2- Compute UHP =

1

1

@
@@

3- If wt(sUT) = w then return (sUT,0)P−1

Cost of one iteration: K = n(n− k) column operations.
Success probability: P =

(n−k
w
)
/
(n
w
)
.

Total cost = K/P .

20 39

Prange’s algorithm

REPEAT:
1- Pick a permutation matrix P

2- Compute UHP =

1

1

@
@@

3- If wt(sUT) = w then return (sUT,0)P−1

Cost of one iteration: K = n(n− k) column operations.
Success probability: P =

(n−k
w
)
/
(n
w
)
.

Total cost = K/P .

20 39

Prange’s algorithm

REPEAT:
1- Pick a permutation matrix P

2- Compute UHP =

1

1

@
@@

3- If wt(sUT) = w then return (sUT,0)P−1

Cost of one iteration: K = n(n− k) column operations.
Success probability: P =

(n−k
w
)
/
(n
w
)
.

Total cost = K/P .

20 39

Prange’s algorithm

REPEAT:
1- Pick a permutation matrix P

2- Compute UHP =

1

1

@
@@

3- If wt(sUT) = w then return (sUT,0)P−1

Cost of one iteration: K = n(n− k) column operations.
Success probability: P =

(n−k
w
)
/
(n
w
)
.

Total cost = K/P .

20 39

Stern and Dumer’s algorithm

UHP = Us =

-� k+ `

6

?

n− k− `

6
?
` s′

s′′

H′

H′′

w − p pw − p p

1

1

0

@@

Step 3

Step 2

Repeat:


1. Permutation + partial Gaussian elimination
2. Find many e′ such that |e′| = p and H′e′ = s′

3. For all good e′, test |s′′ + H′′e′| ≤ w − p

Step 2 is Birthday Decoding (or whatever is best);
Step 3 is (a kind of) Prange;
Total cost is minimized over ` and p.

21 39

Stern and Dumer’s algorithm

UHP = Us =

-� k+ `

6

?

n− k− `

6
?
` s′

s′′

H′

H′′

w − p pw − p p

1

1

0

@@

Step 3

Step 2

Repeat:


1. Permutation + partial Gaussian elimination
2. Find many e′ such that |e′| = p and H′e′ = s′

3. For all good e′, test |s′′ + H′′e′| ≤ w − p

Step 2 is Birthday Decoding (or whatever is best);
Step 3 is (a kind of) Prange;
Total cost is minimized over ` and p.

21 39

Stern and Dumer’s algorithm

UHP = Us =

-� k+ `

6

?

n− k− `

6
?
` s′

s′′

H′

H′′

w − p pw − p p

1

1

0

@@

Step 3

Step 2

Repeat:


1. Permutation + partial Gaussian elimination
2. Find many e′ such that |e′| = p and H′e′ = s′

3. For all good e′, test |s′′ + H′′e′| ≤ w − p

Step 2 is Birthday Decoding (or whatever is best);
Step 3 is (a kind of) Prange;
Total cost is minimized over ` and p.

21 39

Stern and Dumer’s algorithm

Iteration cost: K = n(n− k− `) + 2
√(k+`

p
)

+

(k+`
p
)

2` +

(k+`
p
)

2`

���
Gaussian elimination 6

Birthday decoding

6

Final check

Success probability: P =

(k+`
p
)(n−k−`

w−p
)(n

w
) .

Total cost = K/P , minimized over p and `.

22 39

Stern and Dumer’s algorithm

Iteration cost: K = n(n− k− `) + 2
√(k+`

p
)

+

(k+`
p
)

2` +

(k+`
p
)

2`︸ ︷︷ ︸
���

Gaussian elimination

6

Birthday decoding

6

Final check

Success probability: P =

(k+`
p
)(n−k−`

w−p
)(n

w
) .

Total cost = K/P , minimized over p and `.

22 39

Stern and Dumer’s algorithm

Iteration cost: K = n(n− k− `) + 2
√(k+`

p
)

+

(k+`
p
)

2` +

(k+`
p
)

2`︸ ︷︷ ︸ ︸ ︷︷ ︸
���

Gaussian elimination 6

Birthday decoding

6

Final check

Success probability: P =

(k+`
p
)(n−k−`

w−p
)(n

w
) .

Total cost = K/P , minimized over p and `.

22 39

Stern and Dumer’s algorithm

Iteration cost: K = n(n− k− `) + 2
√(k+`

p
)

+

(k+`
p
)

2` +

(k+`
p
)

2`︸ ︷︷ ︸ ︸ ︷︷ ︸ ︸ ︷︷ ︸
���

Gaussian elimination 6

Birthday decoding

6

Final check

Success probability: P =

(k+`
p
)(n−k−`

w−p
)(n

w
) .

Total cost = K/P , minimized over p and `.

22 39

Stern and Dumer’s algorithm

Iteration cost: K = n(n− k− `) + 2
√(k+`

p
)

+

(k+`
p
)

2` +

(k+`
p
)

2`
���

Gaussian elimination 6

Birthday decoding

6

Final check

Success probability: P =

(k+`
p
)(n−k−`

w−p
)(n

w
) .

Total cost = K/P , minimized over p and `.

22 39

More advanced algorithms

Improved Birthday Decoding: overlapping support.
Representations.
Recursive Birthday Decoding.
Decoding One Out of Many.
Nearest Neighbour approach.

23 39

Complexity

Theoretical asymptotic exponent

Best algorithm solves SD(n,W,R) in 2c·n operations with

1962 c = 0.121 [Pra62]
1988 c = 0.117 [Ste88, Dum89]
2011 c = 0.112 [MMT11]
2012 c = 0.102 [BJMM12]
2017 c = 0.095 [MO15, BM17]
2018 c = 0.089 [BM18]

for w = dGV and worst choice of k.

Practical complexity?

24 39

Complexity

Theoretical asymptotic exponent

Best algorithm solves SD(n,W,R) in 2c·n operations with

1962 c = 0.121 [Pra62]
1988 c = 0.117 [Ste88, Dum89]
2011 c = 0.112 [MMT11]
2012 c = 0.102 [BJMM12]
2017 c = 0.095 [MO15, BM17]
2018 c = 0.089 [BM18]

for w = dGV and worst choice of k.

Practical complexity?

24 39

The Decoding Challenge

decodingchallenge.org

25 39

The Decoding Challenge

Launched in August 2019 by Aragon, Lavauzelle and L.

Goal:
I assess the practical complexity of problems in coding theory;
I motivate the implementation of ISD algorithms;
I increase the confidence in code-based crypto.

Concept:
I 4 categories of challenges;
I instances of increasing size;
I a hall of fame.

26 39

The Decoding Challenge

Launched in August 2019 by Aragon, Lavauzelle and L.

Goal:
I assess the practical complexity of problems in coding theory;
I motivate the implementation of ISD algorithms;
I increase the confidence in code-based crypto.

Concept:
I 4 categories of challenges;
I instances of increasing size;
I a hall of fame.

26 39

4 categories of challenges

2 generic problems
I Syndrome Decoding k/n = 0.5 and w = dGV

I Finding the Lowest Codeword
for k/n = 0.5 and n of cryptographic size

2 problems based on schemes in the NIST competition
I Goppa-McEliece k/n = 0.8 and w = (n− k)/ log2 (n)

I QC-MDPC k/n = 0.5 and w =
√
n

27 39

Questions raised by implementation

Based on previous work from Landais, Sendrier, Meurer and Hochbach,
and recent work from Vasseur, Couvreur, Kunz and L.

Choice of parameters p, `, ε ... must be integers!
Random shuffle vs. Canteaut-Chabaud.
Birthday algorithm: sort vs. hash table.
Allowing overlap?
Early abort?
...

It’s not just about asymptotic exponents anymore!

28 39

Try the Challenge!

decodingchallenge.org

How to contribute?
I Solve some challenges!
I Talk about the project to other people.
I Propose this as a student project.
I Contact us if you want to help.

Current leader of the Hall of Fame:
Valentin Vasseur, n = 450 (for SD)
' 247 operations (Dumer).

You dream to read your name in a Hall of Fame?
This is the chance of a lifetime!

29 39

Try the Challenge!

decodingchallenge.org

How to contribute?
I Solve some challenges!
I Talk about the project to other people.
I Propose this as a student project.
I Contact us if you want to help.

Current leader of the Hall of Fame:
Valentin Vasseur, n = 450 (for SD)
' 247 operations (Dumer).

You dream to read your name in a Hall of Fame?
This is the chance of a lifetime!

29 39

Future challenges

We intend to propose other categories of challenges

I rank-metric Syndrome decoding;

I q-ary Syndrome Decoding in Hamming metric;

I q-ary Syndrome Decoding in Hamming metric
with large weight.

30 39

q-ary Syndrome Decoding

Binary vs. ternary Decoding Challenge

for R = 1/2:

31 39

Binary vs. ternary Decoding Challenge

for R = 1/2:

31 39

Binary vs. ternary Decoding Challenge

for R = 1/2:

31 39

Binary vs. ternary Decoding Challenge

for R = 1/5:

31 39

Some observations

Asymetry

Prange’s algorithm works in polynomial time if

w ∈ J
q− 1
q (n− k), k+

q− 1
q (n− k)K.

For some values of R, there exists an equivalent of dGV for
large weight: (

n
d

)
(q− 1)d = qn−k.

Worst case complexity for Prange’s algorithm is reached for

R = 1− logq(q− 1) and W = 1.
for q = 3 this is R = 0.369.

32 39

Some observations

Asymetry
Prange’s algorithm works in polynomial time if

w ∈ J
q− 1
q (n− k), k+

q− 1
q (n− k)K.

For some values of R, there exists an equivalent of dGV for
large weight: (

n
d

)
(q− 1)d = qn−k.

Worst case complexity for Prange’s algorithm is reached for

R = 1− logq(q− 1) and W = 1.
for q = 3 this is R = 0.369.

32 39

Some observations

Asymetry
Prange’s algorithm works in polynomial time if

w ∈ J
q− 1
q (n− k), k+

q− 1
q (n− k)K.

For some values of R, there exists an equivalent of dGV for
large weight: (

n
d

)
(q− 1)d = qn−k.

Worst case complexity for Prange’s algorithm is reached for

R = 1− logq(q− 1) and W = 1.
for q = 3 this is R = 0.369.

32 39

Some observations

Asymetry
Prange’s algorithm works in polynomial time if

w ∈ J
q− 1
q (n− k), k+

q− 1
q (n− k)K.

For some values of R, there exists an equivalent of dGV for
large weight: (

n
d

)
(q− 1)d = qn−k.

Worst case complexity for Prange’s algorithm is reached for

R = 1− logq(q− 1) and W = 1.
for q = 3 this is R = 0.369.

32 39

Doing better than Prange?

“Ternary Syndrome Decoding with Large Weight”,
Bricout, Chailloux, Debris-Alazard and L., SAC 2019

Motivation: Wave signature scheme [DST19].

What would an equivalent of Dumer’s algorithm be?
W = 1: we look for a solution containing no zeros.
Up to a small transform, 1’s and 2’s become 0’s and 1’s.

Our problem is now the modular knapsack problem!

Given k+ ` vectors hi ∈ F`
3 and a target vector s ∈ F`

3,
find L solutions of the form (b1, . . . ,bk+`) ∈ {0, 1}k+`

such that
∑k+`

i=1 bihi = s.

This can be solved using Wagner’s algorithm [Wag02].

33 39

Doing better than Prange?

“Ternary Syndrome Decoding with Large Weight”,
Bricout, Chailloux, Debris-Alazard and L., SAC 2019

Motivation: Wave signature scheme [DST19].

What would an equivalent of Dumer’s algorithm be?

W = 1: we look for a solution containing no zeros.
Up to a small transform, 1’s and 2’s become 0’s and 1’s.

Our problem is now the modular knapsack problem!

Given k+ ` vectors hi ∈ F`
3 and a target vector s ∈ F`

3,
find L solutions of the form (b1, . . . ,bk+`) ∈ {0, 1}k+`

such that
∑k+`

i=1 bihi = s.

This can be solved using Wagner’s algorithm [Wag02].

33 39

Doing better than Prange?

“Ternary Syndrome Decoding with Large Weight”,
Bricout, Chailloux, Debris-Alazard and L., SAC 2019

Motivation: Wave signature scheme [DST19].

What would an equivalent of Dumer’s algorithm be?
W = 1: we look for a solution containing no zeros.

Up to a small transform, 1’s and 2’s become 0’s and 1’s.

Our problem is now the modular knapsack problem!

Given k+ ` vectors hi ∈ F`
3 and a target vector s ∈ F`

3,
find L solutions of the form (b1, . . . ,bk+`) ∈ {0, 1}k+`

such that
∑k+`

i=1 bihi = s.

This can be solved using Wagner’s algorithm [Wag02].

33 39

Doing better than Prange?

“Ternary Syndrome Decoding with Large Weight”,
Bricout, Chailloux, Debris-Alazard and L., SAC 2019

Motivation: Wave signature scheme [DST19].

What would an equivalent of Dumer’s algorithm be?
W = 1: we look for a solution containing no zeros.
Up to a small transform, 1’s and 2’s become 0’s and 1’s.

Our problem is now the modular knapsack problem!

Given k+ ` vectors hi ∈ F`
3 and a target vector s ∈ F`

3,
find L solutions of the form (b1, . . . ,bk+`) ∈ {0, 1}k+`

such that
∑k+`

i=1 bihi = s.

This can be solved using Wagner’s algorithm [Wag02].

33 39

Doing better than Prange?

“Ternary Syndrome Decoding with Large Weight”,
Bricout, Chailloux, Debris-Alazard and L., SAC 2019

Motivation: Wave signature scheme [DST19].

What would an equivalent of Dumer’s algorithm be?
W = 1: we look for a solution containing no zeros.
Up to a small transform, 1’s and 2’s become 0’s and 1’s.

Our problem is now the modular knapsack problem!

Given k+ ` vectors hi ∈ F`
3 and a target vector s ∈ F`

3,
find L solutions of the form (b1, . . . ,bk+`) ∈ {0, 1}k+`

such that
∑k+`

i=1 bihi = s.

This can be solved using Wagner’s algorithm [Wag02].

33 39

Doing better than Prange?

“Ternary Syndrome Decoding with Large Weight”,
Bricout, Chailloux, Debris-Alazard and L., SAC 2019

Motivation: Wave signature scheme [DST19].

What would an equivalent of Dumer’s algorithm be?
W = 1: we look for a solution containing no zeros.
Up to a small transform, 1’s and 2’s become 0’s and 1’s.

Our problem is now the modular knapsack problem!

Given k+ ` vectors hi ∈ F`
3 and a target vector s ∈ F`

3,
find L solutions of the form (b1, . . . ,bk+`) ∈ {0, 1}k+`

such that
∑k+`

i=1 bihi = s.

This can be solved using Wagner’s algorithm [Wag02].
33 39

Wagner’s algorithm

Set of solutions

Merging on `/2 bits
according to s

s`/2 `/20`/2

L1 L2 L3 L4

Merging on `/2 bits
according to s

Merging on `/2 bits

Figure:Wagner’s algorithm with a = 2.
34 39

Beyond Wagner’s algorithm representations

Using Wagner’s algorithm with a floors and L = 3`/a
solutions can be solved in amortize time O

(
3`/a

)
.

Smoothing of the algorithm.

Using representations (as in [BJMM12]).

Using partial representations.

Remark: When q→∞, all ISD algorithm become equivalent to
Prange’s algorithm [Can17].

35 39

Beyond Wagner’s algorithm representations

Using Wagner’s algorithm with a floors and L = 3`/a
solutions can be solved in amortize time O

(
3`/a

)
.

Smoothing of the algorithm.

Using representations (as in [BJMM12]).

Using partial representations.

Remark: When q→∞, all ISD algorithm become equivalent to
Prange’s algorithm [Can17].

35 39

Beyond Wagner’s algorithm representations

Using Wagner’s algorithm with a floors and L = 3`/a
solutions can be solved in amortize time O

(
3`/a

)
.

Smoothing of the algorithm.

Using representations (as in [BJMM12]).

Using partial representations.

Remark: When q→∞, all ISD algorithm become equivalent to
Prange’s algorithm [Can17].

35 39

Beyond Wagner’s algorithm representations

Using Wagner’s algorithm with a floors and L = 3`/a
solutions can be solved in amortize time O

(
3`/a

)
.

Smoothing of the algorithm.

Using representations (as in [BJMM12]).

Using partial representations.

Remark: When q→∞, all ISD algorithm become equivalent to
Prange’s algorithm [Can17].

35 39

Our algorithm [BCDL19]

7 floors
Blue = “left-right” splits (no representations)
Yellow = representations
Badly-formed elements at floor 4 and 5

36 39

Results (R = 0.5) [BCDL19]

37 39

Hardest instances for q = 3 [BCDL19]

Algorithm q = 2 q = 3 and W > 0.5

Prange 0.121 (R = 0.454) 0.369 (R = 0.369)
Dumer/Wagner 0.116 (R = 0.447) 0.269 (R = 0.369)

BJMM/our algorithm 0.102 (R = 0.427) 0.247 (R = 0.369)

Table: Best exponents with associated rates.

Algorithm q = 2 q = 3 and W > 0.5

Prange 275 44
Dumer/Wagner 295 83

BJMM/Our algorithm 374 99

Table:Minimum input sizes (in kbits) for a time complexity of 2128.

38 39

Hardest instances for q = 3 [BCDL19]

Algorithm q = 2 q = 3 and W > 0.5

Prange 0.121 (R = 0.454) 0.369 (R = 0.369)
Dumer/Wagner 0.116 (R = 0.447) 0.269 (R = 0.369)

BJMM/our algorithm 0.102 (R = 0.427) 0.247 (R = 0.369)

Table: Best exponents with associated rates.

Algorithm q = 2 q = 3 and W > 0.5

Prange 275 44
Dumer/Wagner 295 83

BJMM/Our algorithm 374 99

Table:Minimum input sizes (in kbits) for a time complexity of 2128.

38 39

Concluding remarks

Conclusion

Syndrome decoding is an old problem but still needs to be
studied.

Case q ≥ 3 behaves very differently from q = 2.
I New problem: syndrome decoding in large weight;
I Worst case complexity seems higher than in small weight;
I New cryptographic schemes with shorter key size relying on
this problem?

I Requires further study.

Solve the challenges!

Thank you for your attention!

39 / 39

Conclusion

Syndrome decoding is an old problem but still needs to be
studied.

Case q ≥ 3 behaves very differently from q = 2.

I New problem: syndrome decoding in large weight;
I Worst case complexity seems higher than in small weight;
I New cryptographic schemes with shorter key size relying on
this problem?

I Requires further study.

Solve the challenges!

Thank you for your attention!

39 / 39

Conclusion

Syndrome decoding is an old problem but still needs to be
studied.

Case q ≥ 3 behaves very differently from q = 2.
I New problem: syndrome decoding in large weight;

I Worst case complexity seems higher than in small weight;
I New cryptographic schemes with shorter key size relying on
this problem?

I Requires further study.

Solve the challenges!

Thank you for your attention!

39 / 39

Conclusion

Syndrome decoding is an old problem but still needs to be
studied.

Case q ≥ 3 behaves very differently from q = 2.
I New problem: syndrome decoding in large weight;
I Worst case complexity seems higher than in small weight;

I New cryptographic schemes with shorter key size relying on
this problem?

I Requires further study.

Solve the challenges!

Thank you for your attention!

39 / 39

Conclusion

Syndrome decoding is an old problem but still needs to be
studied.

Case q ≥ 3 behaves very differently from q = 2.
I New problem: syndrome decoding in large weight;
I Worst case complexity seems higher than in small weight;
I New cryptographic schemes with shorter key size relying on
this problem?

I Requires further study.

Solve the challenges!

Thank you for your attention!

39 / 39

Conclusion

Syndrome decoding is an old problem but still needs to be
studied.

Case q ≥ 3 behaves very differently from q = 2.
I New problem: syndrome decoding in large weight;
I Worst case complexity seems higher than in small weight;
I New cryptographic schemes with shorter key size relying on
this problem?

I Requires further study.

Solve the challenges!

Thank you for your attention!

39 / 39

Conclusion

Syndrome decoding is an old problem but still needs to be
studied.

Case q ≥ 3 behaves very differently from q = 2.
I New problem: syndrome decoding in large weight;
I Worst case complexity seems higher than in small weight;
I New cryptographic schemes with shorter key size relying on
this problem?

I Requires further study.

Solve the challenges!

Thank you for your attention!

39 / 39

Conclusion

Syndrome decoding is an old problem but still needs to be
studied.

Case q ≥ 3 behaves very differently from q = 2.
I New problem: syndrome decoding in large weight;
I Worst case complexity seems higher than in small weight;
I New cryptographic schemes with shorter key size relying on
this problem?

I Requires further study.

Solve the challenges!

Thank you for your attention!

39 / 39

Michael Alekhnovich.
More on average case vs approximation complexity.
Computational Complexity, 20(4):755–786, 2011.

Anja Becker, Antoine Joux, Alexander May, and Alexander Meurer.
Decoding random binary linear codes in 2n/20: How 1+ 1 = 0 improves
information set decoding.
In Advances in Cryptology - EUROCRYPT 2012, LNCS. Springer, 2012.

Leif Both and Alexander May.
Optimizing BJMM with Nearest Neighbors: Full Decoding in 22/21n and
McEliece Security.
In WCC Workshop on Coding and Cryptography, September 2017.
on line proceedings, see
http://wcc2017.suai.ru/Proceedings_WCC2017.zip.

Leif Both and Alexander May.
Decoding linear codes with high error rate and its impact for LPN
security.
In Tanja Lange and Rainer Steinwandt, editors, Post-Quantum
Cryptography 2018, volume 10786 of LNCS, pages 25–46, Fort Lauderdale,
FL, USA, April 2018. Springer.

Elwyn Berlekamp, Robert McEliece, and Henk van Tilborg.

39 / 39

On the inherent intractability of certain coding problems.
IEEE Trans. Inform. Theory, 24(3):384–386, May 1978.

Rodolfo Canto Torres.
Asymptotic analysis of ISD algorithms for the q−ary case.
In Proceedings of the Tenth International Workshop on Coding and
Cryptography WCC 2017, September 2017.

Thomas Debris-Alazard, Nicolas Sendrier, and Jean-Pierre Tillich.
Wave: A new family of trapdoor one-way preimage sampleable functions
based on codes.
Cryptology ePrint Archive, Report 2018/996, May 2019.
https://eprint.iacr.org/2018/996.

Il’ya Dumer.
Two decoding algorithms for linear codes.
Probl. Inf. Transm., 25(1):17–23, 1989.

Robert J. McEliece.
A Public-Key System Based on Algebraic Coding Theory, pages 114–116.
Jet Propulsion Lab, 1978.
DSN Progress Report 44.

Alexander May, Alexander Meurer, and Enrico Thomae.
Decoding random linear codes in O(20.054n).

39 / 39

https://eprint.iacr.org/2018/996

In Dong Hoon Lee and Xiaoyun Wang, editors, Advances in Cryptology -
ASIACRYPT 2011, volume 7073 of LNCS, pages 107–124. Springer, 2011.

Alexander May and Ilya Ozerov.
On computing nearest neighbors with applications to decoding of
binary linear codes.
In E. Oswald and M. Fischlin, editors, Advances in Cryptology -
EUROCRYPT 2015, volume 9056 of LNCS, pages 203–228. Springer, 2015.

Harald Niederreiter.
Knapsack-type cryptosystems and algebraic coding theory.
Problems of Control and Information Theory, 15(2):159–166, 1986.

Eugene Prange.
The use of information sets in decoding cyclic codes.
IRE Transactions on Information Theory, 8(5):5–9, 1962.

Vladimir Michilovich Sidelnikov and S.O. Shestakov.
On the insecurity of cryptosystems based on generalized
Reed-Solomon codes.
Discrete Math. Appl., 1(4):439–444, 1992.

Jacques Stern.
A method for finding codewords of small weight.

39 / 39

In G. D. Cohen and J. Wolfmann, editors, Coding Theory and Applications,
volume 388 of LNCS, pages 106–113. Springer, 1988.

David Wagner.
A generalized birthday problem.
In Moti Yung, editor, Advances in Cryptology - CRYPTO 2002, volume 2442 of
LNCS, pages 288–303. Springer, 2002.

39 / 39

	All you ever wanted to know about code-based crypto
	Syndrome Decoding
	The Decoding Challenge
	q-ary Syndrome Decoding
	Concluding remarks

