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Post-Quantum Cryptography
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Lattice Codes Hash Multivariate Isogenies

1978, Robert McEliece: [McE78]
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Error correcting codes

Definition (Code)
An [n, k]Fq linear code C is a linear subspace of Fnq of dimension k.

Definition (Decoder)
A decoder for the code C is a function

ΦC : Fnq → C ∪ {?}.

We say that ΦC can decode up to t errors if

∀c ∈ C,∀e ∈ Fnq, |e| ≤ t ⇒ ΦC(c+ e) = c.
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Error correcting codes

Definition (Generator matrix)
A generator matrix of a code C is a matrix G ∈ Fk×nq such that:

C = {xG | x ∈ Fkq}.

Definition (Parity-check matrix)
A parity-check matrix of a code C is a matrix H ∈ F(n−k)×n

q such
that:

C = {y ∈ Fnq |Hy
ᵀ

= 0}.
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Error correcting codes

Example (Repetition Code)

F2 → F32
0 7→ (0,0,0)
1 7→ (1,1,1)

Example (Decoder)

if |x| <= 1:
return 0

else:
return 1

G =
(
1 1 1

) H =

(
1 1 0
0 1 1

)
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Code-based cryptography

Main idea: how hard is it to decode up to t errors?

For a random code tmedium hard

For some special families
of structured codes t

easy hard

easy = in polynomial time (with trap)
medium / hard = requires exponential time

{

CRYPTO
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How to design a code-based cryptosystem?

Ingredients:
a family F of structured codes;
a decoder ΦF that can correct efficiently up to t errors;
a shaker!

Receipe:

KeyGen()
Gsk

$←− F
Gpk ← Shake(Gsk)

Enc(m)
e $←− Fnq, s.t. |e| = t
c← mGpk + e

Dec(c)

m← ΦF (Gsk, c)

The key to success:
choose t s.t. it is hard to decode t errors for a random code;
ΦF needs the structured version of the code to be efficient;
the shaker shakes well enough!
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Security hypothesis

How could Eve break this scheme? 2 possibilities:

1. Reconstruct Gsk from Gpk and then use ΦF to decode.

Security hypothesis 1
Gpk is indistinguishable from a random k× n matrix.

2. Decode using Gpk.

Security hypothesis 2
Decoding t errors in a random [n, k]-code is hard.

Remark: Hypothesis 1 depends on the choice of the family of
codes F and the shaker, while Hypothesis 2 is generic!
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Some examples

Examples of choices of F :
I Goppa codes [Original McEliece];
I Reed Solomon codes [Nie86] (broken by [SS92]);
I QC-MDPC codes [BIKE];
I Rank-based codes [ROLLO].

Examples of shakers:
I row scrambler;
I columns isometry (permutation);
I subfield subcode;
I adding random columns...
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Syndrome Decoding



Syndrome decoding

Let C be an [n, k] linear code of parity-check matrix H.
Let y ∈ Fnq and s = yHᵀ ∈ Fkq (the syndrome of y).
The following problems are equivalent.

1. Find a codeword x ∈ C such that |y − x| ≤ t.
2. Find an error e ∈ y + C such that |e| ≤ t.
3. Find an error e such that eHᵀ

= s and |e| ≤ t.

The Syndrome Decoding Problem - SD(q,n,R,W)

Instance: H ∈ F(n−k)×n
q ,

s ∈ Fn−kq .
Output: e ∈ Fnq such that |e| = w and eHᵀ

= s,
where k 4=dRne, w 4=dWne.
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Complexity

Theorem (NP-completeness)
The Syndrome Decoding problem is NP-complete. [BMvT78]

Conjecture (average case)
Decoding nε errors is hard on average ∀ε > 0. [Ale11]
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Binary Syndrome Decoding Problem

From now on, we focus on the binary case q = 2.

e = Hamming weight w

H = s =

-� n

6

?

n− k

Find w columns of H adding to s

The next slides of this section are reproduced from Nicolas Sendrier’s
MOOC “Code Based Cryptography” with his authorization.
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Number of solutions

Fix n and k, let w grow:

-
0

w

dGV
4
= Gilbert-Varshamov radius, s.t.

( n
dGV

)
= 2n−k.

In cryptanalysis, we only consider situations where there is a
solution.

We expect ≈ max
(
1,
(n
w
)
/2n−k

)
solutions.
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Exhaustive search

Problem:
find w columns of H
adding to s (modulo 2)

H = h1 h2 · · · hn s =

-� n
6

?

n− k

Enumerate all w-tuples (j1, j2, · · · , jw) such that

1 ≤ j1 < j2 < . . . < jw ≤ n.

Check whether
s+ hj1 + hj2 · · · + hjw = 0.

Cost: about
(
n
w

)
column operations.

Remark: we obtain all solutions.
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Birthday algorithm

Problem:
find w columns of H
adding to s (modulo 2)

H = H1 H2 s =

-� n
6

?

n− k

Idea: Split H into two equal parts and enumerate the two
following sets

L1 =
{
e1HT1 , |e1| =

w
2

}
and L2 =

{
s+ e2HT2 , |e2| =

w
2

}
If L1 ∩ L2 6= ∅, we have solution(s): s+ e1HT1 + e2HT2 = 0

Cost: Requires about 2L+ L2/2n−k column operations,
where L = |L1| = |L2|
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Birthday algorithm

Compute L1 ∩ L2 =
{
e1HT1 | |(|e1) = w

2
}
∩
{
s+ e2HT2 | |(|e2) = w

2
}

H = H1 H2

-� n

s
6

?

n− k

Total cost: +

(n/2
w/2
)2

2n−k

|L1| |L2| |L1|·|L2|
2n−k

for all e1 of weight w/2
x← e1HT1

; T[x]← T[x] ∪ {e1}
for all e2 of weight w/2

x← s+ e2HT2

for all e1 ∈ T[x]
I ← I ∪ {(e1, e2)}

return I
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Birthday algorithm

One particular error of Hamming weight w splits evenly with
probability

P =

(n/2
w/2
)2(n

w
)

We may have to repeat with H divided in several different ways

or more generally by picking the two halves randomly

Repeat 1/P times to get most solutions. Cost: O
(√(n

w
))

.
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The power of linear algebra

Until here, we have not used linear algebra!

For any invertible U ∈ {0, 1}(n−k)×(n−k) and any permutation
matrix P ∈ {0, 1}n×n

(
eHT = s

)
⇔
(
e′H′T = s′

)
where


H′ ← UHP
s′ ← sUT
e′ ← eP.

Proof: e′H′T = (eP)(UHP)T

= (eP)PTHTUT
= eHTUT
= sUT
= s′.
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Prange’s algorithm

Idea: Perform a Gaussian Elimination and hope that all the
errors are in positions corresponding to the identity part!

H′ = UHP =

1

1
and s′ = sUT =

@
@@

e′ = eP = 0 0
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Prange’s algorithm

REPEAT:
1- Pick a permutation matrix P

2- Compute UHP =

1

1

@
@@

3- If wt(sUT) = w then return (sUT,0)P−1

Cost of one iteration: K = n(n− k) column operations.
Success probability: P =

(n−k
w
)
/
(n
w
)
.

Total cost = K/P .
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Stern and Dumer’s algorithm

UHP = Us =

-� k+ `

6

?

n− k− `

6
?
` s′

s′′

H′

H′′

w − p pw − p p

1

1

0

@@

Step 3

Step 2

Repeat:


1. Permutation + partial Gaussian elimination
2. Find many e′ such that |e′| = p and H′e′ = s′

3. For all good e′, test |s′′ + H′′e′| ≤ w − p

Step 2 is Birthday Decoding (or whatever is best);
Step 3 is (a kind of) Prange;
Total cost is minimized over ` and p.
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Stern and Dumer’s algorithm

Iteration cost: K = n(n− k− `) + 2
√(k+`

p
)

+

(k+`
p
)

2` +

(k+`
p
)

2`

���
Gaussian elimination 6

Birthday decoding

6

Final check

Success probability: P =

(k+`
p
)(n−k−`

w−p
)(n

w
) .

Total cost = K/P , minimized over p and `.
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More advanced algorithms

Improved Birthday Decoding: overlapping support.
Representations.
Recursive Birthday Decoding.
Decoding One Out of Many.
Nearest Neighbour approach.

23 39



Complexity

Theoretical asymptotic exponent

Best algorithm solves SD(n,W,R) in 2c·n operations with

1962 c = 0.121 [Pra62]
1988 c = 0.117 [Ste88, Dum89]
2011 c = 0.112 [MMT11]
2012 c = 0.102 [BJMM12]
2017 c = 0.095 [MO15, BM17]
2018 c = 0.089 [BM18]

for w = dGV and worst choice of k.

Practical complexity?
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The Decoding Challenge



decodingchallenge.org
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The Decoding Challenge

Launched in August 2019 by Aragon, Lavauzelle and L.

Goal:
I assess the practical complexity of problems in coding theory;
I motivate the implementation of ISD algorithms;
I increase the confidence in code-based crypto.

Concept:
I 4 categories of challenges;
I instances of increasing size;
I a hall of fame.
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4 categories of challenges

2 generic problems
I Syndrome Decoding k/n = 0.5 and w = dGV

I Finding the Lowest Codeword
for k/n = 0.5 and n of cryptographic size

2 problems based on schemes in the NIST competition
I Goppa-McEliece k/n = 0.8 and w = (n− k)/ log2 (n)

I QC-MDPC k/n = 0.5 and w =
√
n
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Questions raised by implementation

Based on previous work from Landais, Sendrier, Meurer and Hochbach,
and recent work from Vasseur, Couvreur, Kunz and L.

Choice of parameters p, `, ε ... must be integers!
Random shuffle vs. Canteaut-Chabaud.
Birthday algorithm: sort vs. hash table.
Allowing overlap?
Early abort?
...

It’s not just about asymptotic exponents anymore!
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Try the Challenge!

decodingchallenge.org

How to contribute?
I Solve some challenges!
I Talk about the project to other people.
I Propose this as a student project.
I Contact us if you want to help.

Current leader of the Hall of Fame:
Valentin Vasseur, n = 450 (for SD)
' 247 operations (Dumer).

You dream to read your name in a Hall of Fame?
This is the chance of a lifetime!
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Future challenges

We intend to propose other categories of challenges

I rank-metric Syndrome decoding;

I q-ary Syndrome Decoding in Hamming metric;

I q-ary Syndrome Decoding in Hamming metric
with large weight.
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q-ary Syndrome Decoding



Binary vs. ternary Decoding Challenge

for R = 1/2:
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Binary vs. ternary Decoding Challenge

for R = 1/5:
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Some observations

Asymetry

Prange’s algorithm works in polynomial time if

w ∈ J
q− 1
q (n− k), k+

q− 1
q (n− k)K.

For some values of R, there exists an equivalent of dGV for
large weight: (

n
d

)
(q− 1)d = qn−k.

Worst case complexity for Prange’s algorithm is reached for

R = 1− logq(q− 1) and W = 1.
for q = 3 this is R = 0.369.

32 39



Some observations

Asymetry
Prange’s algorithm works in polynomial time if

w ∈ J
q− 1
q (n− k), k+

q− 1
q (n− k)K.

For some values of R, there exists an equivalent of dGV for
large weight: (

n
d

)
(q− 1)d = qn−k.

Worst case complexity for Prange’s algorithm is reached for

R = 1− logq(q− 1) and W = 1.
for q = 3 this is R = 0.369.

32 39



Some observations

Asymetry
Prange’s algorithm works in polynomial time if

w ∈ J
q− 1
q (n− k), k+

q− 1
q (n− k)K.

For some values of R, there exists an equivalent of dGV for
large weight: (

n
d

)
(q− 1)d = qn−k.

Worst case complexity for Prange’s algorithm is reached for

R = 1− logq(q− 1) and W = 1.
for q = 3 this is R = 0.369.

32 39



Some observations

Asymetry
Prange’s algorithm works in polynomial time if

w ∈ J
q− 1
q (n− k), k+

q− 1
q (n− k)K.

For some values of R, there exists an equivalent of dGV for
large weight: (

n
d

)
(q− 1)d = qn−k.

Worst case complexity for Prange’s algorithm is reached for

R = 1− logq(q− 1) and W = 1.
for q = 3 this is R = 0.369.

32 39



Doing better than Prange?

“Ternary Syndrome Decoding with Large Weight”,
Bricout, Chailloux, Debris-Alazard and L., SAC 2019

Motivation: Wave signature scheme [DST19].

What would an equivalent of Dumer’s algorithm be?
W = 1: we look for a solution containing no zeros.
Up to a small transform, 1’s and 2’s become 0’s and 1’s.

Our problem is now the modular knapsack problem!

Given k+ ` vectors hi ∈ F`
3 and a target vector s ∈ F`

3,
find L solutions of the form (b1, . . . ,bk+`) ∈ {0, 1}k+`

such that
∑k+`

i=1 bihi = s.

This can be solved using Wagner’s algorithm [Wag02].
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Wagner’s algorithm

Set of solutions

Merging on `/2 bits
according to s

s`/2 `/20`/2

L1 L2 L3 L4

Merging on `/2 bits
according to s

Merging on `/2 bits

Figure:Wagner’s algorithm with a = 2.
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Beyond Wagner’s algorithm representations

Using Wagner’s algorithm with a floors and L = 3`/a
solutions can be solved in amortize time O

(
3`/a

)
.

Smoothing of the algorithm.

Using representations (as in [BJMM12]).

Using partial representations.

Remark: When q→∞, all ISD algorithm become equivalent to
Prange’s algorithm [Can17].
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Our algorithm [BCDL19]

7 floors
Blue = “left-right” splits (no representations)
Yellow = representations
Badly-formed elements at floor 4 and 5
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Results (R = 0.5) [BCDL19]
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Hardest instances for q = 3 [BCDL19]

Algorithm q = 2 q = 3 and W > 0.5

Prange 0.121 (R = 0.454) 0.369 (R = 0.369)
Dumer/Wagner 0.116 (R = 0.447) 0.269 (R = 0.369)

BJMM/our algorithm 0.102 (R = 0.427) 0.247 (R = 0.369)

Table: Best exponents with associated rates.

Algorithm q = 2 q = 3 and W > 0.5

Prange 275 44
Dumer/Wagner 295 83

BJMM/Our algorithm 374 99

Table:Minimum input sizes (in kbits) for a time complexity of 2128.
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Concluding remarks



Conclusion

Syndrome decoding is an old problem but still needs to be
studied.

Case q ≥ 3 behaves very differently from q = 2.
I New problem: syndrome decoding in large weight;
I Worst case complexity seems higher than in small weight;
I New cryptographic schemes with shorter key size relying on
this problem?

I Requires further study.

Solve the challenges!

Thank you for your attention!

39 / 39



Conclusion

Syndrome decoding is an old problem but still needs to be
studied.

Case q ≥ 3 behaves very differently from q = 2.

I New problem: syndrome decoding in large weight;
I Worst case complexity seems higher than in small weight;
I New cryptographic schemes with shorter key size relying on
this problem?

I Requires further study.

Solve the challenges!

Thank you for your attention!

39 / 39



Conclusion

Syndrome decoding is an old problem but still needs to be
studied.

Case q ≥ 3 behaves very differently from q = 2.
I New problem: syndrome decoding in large weight;

I Worst case complexity seems higher than in small weight;
I New cryptographic schemes with shorter key size relying on
this problem?

I Requires further study.

Solve the challenges!

Thank you for your attention!

39 / 39



Conclusion

Syndrome decoding is an old problem but still needs to be
studied.

Case q ≥ 3 behaves very differently from q = 2.
I New problem: syndrome decoding in large weight;
I Worst case complexity seems higher than in small weight;

I New cryptographic schemes with shorter key size relying on
this problem?

I Requires further study.

Solve the challenges!

Thank you for your attention!

39 / 39



Conclusion

Syndrome decoding is an old problem but still needs to be
studied.

Case q ≥ 3 behaves very differently from q = 2.
I New problem: syndrome decoding in large weight;
I Worst case complexity seems higher than in small weight;
I New cryptographic schemes with shorter key size relying on
this problem?

I Requires further study.

Solve the challenges!

Thank you for your attention!

39 / 39



Conclusion

Syndrome decoding is an old problem but still needs to be
studied.

Case q ≥ 3 behaves very differently from q = 2.
I New problem: syndrome decoding in large weight;
I Worst case complexity seems higher than in small weight;
I New cryptographic schemes with shorter key size relying on
this problem?

I Requires further study.

Solve the challenges!

Thank you for your attention!

39 / 39



Conclusion

Syndrome decoding is an old problem but still needs to be
studied.

Case q ≥ 3 behaves very differently from q = 2.
I New problem: syndrome decoding in large weight;
I Worst case complexity seems higher than in small weight;
I New cryptographic schemes with shorter key size relying on
this problem?

I Requires further study.

Solve the challenges!

Thank you for your attention!

39 / 39



Conclusion

Syndrome decoding is an old problem but still needs to be
studied.

Case q ≥ 3 behaves very differently from q = 2.
I New problem: syndrome decoding in large weight;
I Worst case complexity seems higher than in small weight;
I New cryptographic schemes with shorter key size relying on
this problem?

I Requires further study.

Solve the challenges!

Thank you for your attention!
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