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To instanciate a secure code-based cryptographic scheme, one
needs a family of codes such that:

1. there exists good decoding algorithm ;

2. the randomized version of the code is indistinguishable from a
random code;
→ key security

3. it is computationaly hard to correct the errors whithout
knowing of the structure of the code (message security).
→ message security
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- Idea: mix a GRS code with random columns.
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Definition (Generalised Reed Solomon codes)

The generalised Reed–Solomon (GRS) code with support x and
multiplier y of dimension k is defined as

GRSk(x , y)
def
= {(y1f (x1), . . . , ynf (xn)) | f ∈ Fq[x ]<k} .

Sidelnikov Shestakov (1992)
Given a generator matrix of a GRS code C , it is possible to find x
and y such that C = GRSk(x , y).
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Parameters

Table: Set of parameters for RLCE-short.

Claimed security n k t w q Public key size (kB)

128 532 376 78 96 210 118
192 846 618 114 144 210 287
256 1160 700 230 311 211 742

Table: Set of parameters for RLCE-long.

Claimed security n k t w q Public key size (kB)

128 630 470 80 160 210 188
192 1000 764 118 236 210 450
256 1360 800 280 560 211 1232
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Proof.
Let c and c ′ ∈ GRSk(x , y).

c = (y1p(x1), . . . , ynp(xn)), c ′ = (y1q(x1), . . . , ynq(xn))

where p and q are two polynomials of degree at most k − 1.

c ? c ′ = y2
1p(x1)q(x1), . . . , y

2
np(xn)q(xn)

= y2
1 r(x1), . . . , y

2
n r(xn).

where r is a polynomial of degree at most 2k − 2.

Hence,
(GRSk(x , y))?2 = GRS2k−1(x , y ? y).
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The Tools: Punctured and Shortened Codes

Definition (punctured code)
Let C ⊆ Fn

q and j ∈ J1, nK.

P{j} (C )
def
= {(ci )i∈J1,nK,i 6=j s.t. c ∈ C }.

Definition (shortened code)
Let C ⊆ Fn

q and j ∈ J1, nK.

S{j} (C )
def
= P{j} ({c ∈ C s.t. cj = 0}) .
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The Tools: Punctured and Shortened Codes

For C a random code of dimension k and length n:

C random C ′ = S (C )

length = n −→ length n′ = n − 1
dimension = k dimension k ′ = k − 1

dimC ?2 = min
(
k(k+1)

2 , n
)
.

Repeat until dimC ?2 < n.
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Lemma : GRS+Rand

A
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= GRS Rand

subcode of length n
blabla of a GRS code

of dimension kGRS

blabla random code of length r
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If the equality holds, then for every i ∈ Jn + 1, n + wK:

dimP{i}
(
A ?2) = dimA ?2 − 1.
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Derandomization Lemma

Lemma

GRS

↓ shortening one PR column ↓

GRS



Derandomization Lemma

Proof.
By construction, there is

- a polynomial f ∈ Fq[x ]<k (the GRS part) ;

- a linear form ψ (the random part) ;

- elements a, b, c , d ∈ Fq (the mixing)

such that, at position i , for any c ∈ C , we have

ci = a · yj f (xj) + c · ψ(f ),

cτ(i) = b · yj f (xj) + d · ψ(f ).

Shortening in i ⇔ f ∈ Fq[x ]<k s.t. ci = 0.

i.e. ψ(f ) = −c−1ayj f (xj).

Therefore, for any c ∈ S{i} (C ), we have

cτ(i) = (b − dac−1)yj f (xj).
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When can we use the distinguisher?

Conditions

dimC ′
?2
<

(
k + 1− `

2

)
,

dimC ′
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< n + w − `.

Consequence: works only if

n − k > w +
3+
√
16w + 1
2

= w + O(
√
w),

i.e. works up to values of w that are close to n − k .

Conclusion

The distinguisher works for RLCE-short but not for RLCE-long.
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3. Puncture the twin positions to get a GRS code.
Apply the Sidelnikov Shestakov attack.

4. For each pair of twin positions, recover the mixing matrix.

5. Finish to recover the structure of the GRS code.
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Step 1: choose `

Constraint: `min 6 ` < `max, where:

`min = w + 2k − n

`max =

⌈
k − 3+

√
16w + 1
2

− 1
⌉
·

Choice:
`

def
= `max − 1.
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Step 2a: identify PR positions

Choose a subset of columns to shorten:

L ⊆ J1, n + wK s.t. |L| = `.

Idea: Check for all positions i ∈ J1, n + wK \ L:

dim (SL (C ))?2
?
= dim

(
P{i} (SL (C ))

)?2
.

Case 1 i ∈ IGRS ⇒ the dimension does not change ;

Case 2 i ∈ IPR and τ(i) ∈ L: position i is “derandomized” in SL (C )

and behaves like a GRS position ⇒ see Case 1 ;

Case 3 i ∈ IPR and τ(i) 6∈ L: the column behaves like a random one
⇒ puncturing reduces the dimension.

This gives TL
def
= IPR ∩ (J1, n + wK \ L) .
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Step 2b: match twin positions

For i ∈ TL, how to identify τ(i) ?

Idea: Check for all positions j ∈ TL \ {i}:

dim
(
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)?2 ?
= dim

(
P{j}

(
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.

Case 1 j = τ(i) : position j is “derandomized” in SL∪{i} (C ) and
behaves like a GRS position
⇒ the dimension does not change ;

Case 2 j 6= τ(i) : the column behaves like a random one
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Repeat Step 2 with random choices of L
until you identify all twin positions.



Step 2b: match twin positions

For i ∈ TL, how to identify τ(i) ?

Idea: Check for all positions j ∈ TL \ {i}:

dim
(
SL∪{i} (C )

)?2 ?
= dim

(
P{j}

(
SL∪{i} (C )

))?2
.

Case 1 j = τ(i) : position j is “derandomized” in SL∪{i} (C ) and
behaves like a GRS position
⇒ the dimension does not change ;

Case 2 j 6= τ(i) : the column behaves like a random one
⇒ puncturing reduces the dimension.

Repeat Step 2 with random choices of L
until you identify all twin positions.



Step 2b: match twin positions

For i ∈ TL, how to identify τ(i) ?

Idea: Check for all positions j ∈ TL \ {i}:

dim
(
SL∪{i} (C )

)?2 ?
= dim

(
P{j}

(
SL∪{i} (C )

))?2
.

Case 1 j = τ(i) : position j is “derandomized” in SL∪{i} (C ) and
behaves like a GRS position
⇒ the dimension does not change ;

Case 2 j 6= τ(i) : the column behaves like a random one
⇒ puncturing reduces the dimension.

Repeat Step 2 with random choices of L
until you identify all twin positions.



Step 2b: match twin positions

For i ∈ TL, how to identify τ(i) ?

Idea: Check for all positions j ∈ TL \ {i}:

dim
(
SL∪{i} (C )

)?2 ?
= dim

(
P{j}

(
SL∪{i} (C )

))?2
.

Case 1 j = τ(i) : position j is “derandomized” in SL∪{i} (C ) and
behaves like a GRS position
⇒ the dimension does not change ;

Case 2 j 6= τ(i) : the column behaves like a random one
⇒ puncturing reduces the dimension.

Repeat Step 2 with random choices of L
until you identify all twin positions.



Step 2b: match twin positions

For i ∈ TL, how to identify τ(i) ?

Idea: Check for all positions j ∈ TL \ {i}:

dim
(
SL∪{i} (C )

)?2 ?
= dim

(
P{j}

(
SL∪{i} (C )

))?2
.

Case 1 j = τ(i) : position j is “derandomized” in SL∪{i} (C ) and
behaves like a GRS position
⇒ the dimension does not change ;

Case 2 j 6= τ(i) : the column behaves like a random one
⇒ puncturing reduces the dimension.

Repeat Step 2 with random choices of L
until you identify all twin positions.



Attack Outline

1. Choose the value of `.

2. Shorten on ` positions.
Identify pairs of twin positions.
Repeat.

3. Puncture the twin positions to get a GRS code.
Apply the Sidelnikov Shestakov attack.

4. For each pair of twin positions, recover the mixing matrix.

5. Finish to recover the structure of the GRS code.



Attack Outline

1. Choose the value of `.

2. Shorten on ` positions.
Identify pairs of twin positions.
Repeat.

3. Puncture the twin positions to get a GRS code.
Apply the Sidelnikov Shestakov attack.

4. For each pair of twin positions, recover the mixing matrix.

5. Finish to recover the structure of the GRS code.



Attack Outline

1. Choose the value of `.

2. Shorten on ` positions.
Identify pairs of twin positions.
Repeat.

3. Puncture the twin positions to get a GRS code.
Apply the Sidelnikov Shestakov attack.

4. For each pair of twin positions, recover the mixing matrix.

5. Finish to recover the structure of the GRS code.



Step 4: recover the mixing matrix
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how to recover the GRS and the random column ?

C (i) def
= GRS
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Step 4: recover the mixing matrix (2)

By construction, there is

- a polynomial f ∈ Fq[x ]<k (the GRS part) ;
- a linear form ψ (the random part) ;
- elements a, b, c , d ∈ Fq (the mixing)

such that, at position i , for any c ∈ C (i), we have

ci = a · yj f (xj) + c · ψ(f ),

cτ(i) = b · yj f (xj) + d · ψ(f ).

Shortening in i ⇔ f ∈ Fq[x ]<k s.t. ci = 0.

Therefore, for any c ∈ S{i}
(
C (i)

)
, we have

cτ(i) = (b − ac−1)f (xj).
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- Find the corresponding f ∈ Fq[x ]<k by interpolation on the
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Still need to find a, b and c.

Bruteforce works (Fq = 210).
Or use another technical trick.
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