Recovering short secret keys of RLCE KEM in polynomial time

GT "Butte aux Cailles", January 17, 2019

Alain Couvreur¹, Matthieu Lequesne^{2,3} and Jean-Pierre Tillich³

- 1 Inria Saclay team Grace, École polytechnique
- 2 Sorbonne Université Paris
- 3 Inria Paris team Secret

Context

Public Key Cryptography

Public Key Cryptography

Public Key Cryptography

Code-based cryptosystem (à la McEliece)

Code-based cryptosystem (à la McEliece) **Main goal:** achieve relatively short keys

Code-based cryptosystem (à la McEliece) **Main goal:** achieve relatively short keys

1. there exists good decoding algorithm ;

- 1. there exists good decoding algorithm ;
- 2. the randomized version of the code is indistinguishable from a random code;
 - \rightarrow key security

- 1. there exists good decoding algorithm ;
- 2. the randomized version of the code is indistinguishable from a random code;
 - \rightarrow key security
- 3. it is computationaly hard to correct the errors whithout knowing of the structure of the code (message security).
 - \rightarrow message security

The RLCE Scheme

- NIST call for post-quantum cryptography standardization;
- Key Encapsulation Mechanism;
- Proposed by Yonggee Wang (UNC Charlotte);

- NIST call for post-quantum cryptography standardization;
- Key Encapsulation Mechanism;
- Proposed by Yonggee Wang (UNC Charlotte);
- Code-based cryptosystem (à la McEliece);
- Idea: mix a GRS code with random columns.

Definition (Generalised Reed Solomon codes)

The generalised Reed–Solomon (GRS) code with support x and multiplier y of dimension k is defined as

$$\mathsf{GRS}_k(\mathbf{x},\mathbf{y}) \stackrel{\text{def}}{=} \{(y_1f(x_1),\ldots,y_nf(x_n)) \mid f \in \mathbb{F}_q[\mathbf{x}]_{< k}\}.$$

Definition (Generalised Reed Solomon codes)

The generalised Reed–Solomon (GRS) code with support x and multiplier y of dimension k is defined as

$$\mathsf{GRS}_k(\mathbf{x},\mathbf{y}) \stackrel{\text{def}}{=} \{(y_1f(x_1),\ldots,y_nf(x_n)) \mid f \in \mathbb{F}_q[\mathbf{x}]_{< k}\}.$$

Sidelnikov Shestakov (1992)

Given a generator matrix of a GRS code \mathscr{C} , it is possible to find x and y such that $\mathscr{C} = \text{GRS}_k(x, y)$.

$$oldsymbol{G}_0 \leftarrow GRS(n,k)$$

 $oldsymbol{R} \leftarrow \mathbb{F}_a^{k imes w}$

$$oldsymbol{G}_0 \leftarrow GRS(n,k)$$

 $oldsymbol{R} \leftarrow \mathbb{F}_q^{k imes w}$

$$\boldsymbol{G}_1 \stackrel{\mathsf{def}}{=} \min(\boldsymbol{G}_0, \boldsymbol{R})$$

$$oldsymbol{G}_0 \leftarrow GRS(n,k)$$

 $oldsymbol{R} \leftarrow \mathbb{F}_q^{k imes w}$

$$\boldsymbol{G}_1 \stackrel{\text{def}}{=} \min(\boldsymbol{G}_0, \boldsymbol{R})$$

$$\mathbf{A}_{i} \leftarrow \mathbb{F}_{q}^{2 \times 2}$$
$$\mathbf{A} \stackrel{\text{def}}{=} \begin{pmatrix} I_{n-w} & & (0) \\ & \mathbf{A}_{1} & & \\ & \ddots & \\ (0) & & \mathbf{A}_{w} \end{pmatrix}$$
$$\mathbf{G}_{2} \stackrel{\text{def}}{=} \mathbf{G}_{1} \mathbf{A}$$

$$oldsymbol{G}_0 \leftarrow GRS(n,k)$$

 $oldsymbol{R} \leftarrow \mathbb{F}_q^{k imes w}$

$$G_1 \stackrel{\text{def}}{=} \min(G_0, R)$$

$$\boldsymbol{A}_{i} \leftarrow \mathbb{F}_{q}^{2\times 2}$$
$$\boldsymbol{A} \stackrel{\text{def}}{=} \begin{pmatrix} \boldsymbol{I}_{n-w} & & (0) \\ & \boldsymbol{A}_{1} & & \\ & \ddots & \\ (0) & & \boldsymbol{A}_{w} \end{pmatrix}$$
$$\boldsymbol{G}_{2} \stackrel{\text{def}}{=} \boldsymbol{G}_{1} \boldsymbol{A}$$

$$m{P} \leftarrow \mathfrak{S}_{n+w}$$

 $m{G} \stackrel{\text{def}}{=} m{G}_2 m{P}$

RLCE-short *vs.* **RLCE-long**: Depends on the size of *w*.

- RLCE-short:
$$w \approx \frac{n-k}{2}$$
;

- RLCE-long:
$$w = n - k$$
.

RLCE-short *vs.* **RLCE-long**: Depends on the size of *w*.

- RECE-SHOPE:
$$W \approx \frac{1}{2}$$
;

- RLCE-long: w = n - k.

Purpose of this talk : Understand why we manage to break RLCEshort but not RLCE-long.

Table: Set of parameters for **RLCE-short**.

Claimed security	п	k	t	W	q	Public key size (kB)
128	532	376	78	96	2 ¹⁰	118
192	846	618	114	144	2^{10}	287
256	1160	700	230	311	2^{11}	742

Table: Set of parameters for **RLCE-long**.

Claimed security	п	k	t	W	q	Public key size (kB)
128	630	470	80	160	2 ¹⁰	188
192	1000	764	118	236	2 ¹⁰	450
256	1360	800	280	560	2^{11}	1232

The Tools

Definition (Schur product)

Schur product of vectors: $\boldsymbol{a} \star \boldsymbol{b} \stackrel{\text{def}}{=} (a_1)$

$$\boldsymbol{a} \star \boldsymbol{b} \stackrel{\text{def}}{=} (a_1 b_1, \ldots, a_n b_n).$$

Definition (Schur product)

Schur product of vectors: $\boldsymbol{a} \star \boldsymbol{b} \stackrel{\text{def}}{=} (a_1 b_1, \dots, a_n b_n).$ Schur product of codes:

$$\mathcal{A} \star \mathcal{B} \stackrel{\mathsf{def}}{=} \operatorname{\mathsf{Span}}_{\mathbb{F}_q} \left\{ \boldsymbol{a} \star \boldsymbol{b} \mid \boldsymbol{a} \in \mathcal{A}, \ \boldsymbol{b} \in \mathcal{B} \right\}.$$

Definition (Schur product)

Schur product of vectors: $\boldsymbol{a} \star \boldsymbol{b} \stackrel{\text{def}}{=} (a_1 b_1, \dots, a_n b_n).$ Schur product of codes:

$$\mathcal{A} \star \mathcal{B} \stackrel{\mathsf{def}}{=} \operatorname{\mathsf{Span}}_{\mathbb{F}_q} \left\{ \boldsymbol{a} \star \boldsymbol{b} \mid \boldsymbol{a} \in \mathcal{A}, \ \boldsymbol{b} \in \mathcal{B} \right\}.$$

Notation: $\mathscr{C}^{\star 2} \stackrel{\mathsf{def}}{=} \mathscr{C} \star \mathscr{C}.$

Question

Given a code \mathscr{C} of dimension k, what is the value of dim $\mathscr{C}^{\star 2}$?

Question

Given a code \mathscr{C} of dimension k, what is the value of dim $\mathscr{C}^{\star 2}$?

Square-code Distinguisher

$$\mathscr{C}$$
 random $\Rightarrow \dim \mathscr{C}^{\star 2} = \binom{k+1}{2} = \frac{k(k+1)}{2}$.

Question

Given a code \mathscr{C} of dimension k, what is the value of dim $\mathscr{C}^{\star 2}$?

Square-code Distinguisher

$$\mathscr{C}$$
 random $\Rightarrow \dim \mathscr{C}^{\star 2} = \binom{k+1}{2} = \frac{k(k+1)}{2}.$

 $\mathscr{C} = \mathsf{GRS}_k(\mathbf{x}, \mathbf{y}) \Rightarrow \dim \mathscr{C}^{\star 2} = 2k - 1.$

The Tools: Square-code Distinguisher

Proof.

Let c and $c' \in GRS_k(x, y)$.

$$c = (y_1 p(x_1), \dots, y_n p(x_n)), \quad c' = (y_1 q(x_1), \dots, y_n q(x_n))$$

where p and q are two polynomials of degree at most k - 1.
The Tools: Square-code Distinguisher

Proof.

Let c and $c' \in GRS_k(x, y)$.

$$\boldsymbol{c} = (y_1 \boldsymbol{p}(x_1), \dots, y_n \boldsymbol{p}(x_n)), \quad \boldsymbol{c}' = (y_1 \boldsymbol{q}(x_1), \dots, y_n \boldsymbol{q}(x_n))$$

where p and q are two polynomials of degree at most k - 1.

$$c \star c' = y_1^2 p(x_1) q(x_1), \dots, y_n^2 p(x_n) q(x_n) = y_1^2 r(x_1), \dots, y_n^2 r(x_n).$$

where *r* is a polynomial of degree at most 2k - 2.

The Tools: Square-code Distinguisher

Proof.

Let c and $c' \in GRS_k(x, y)$.

$$\boldsymbol{c} = (y_1 \boldsymbol{p}(x_1), \dots, y_n \boldsymbol{p}(x_n)), \quad \boldsymbol{c}' = (y_1 \boldsymbol{q}(x_1), \dots, y_n \boldsymbol{q}(x_n))$$

where p and q are two polynomials of degree at most k - 1.

$$c \star c' = y_1^2 p(x_1) q(x_1), \dots, y_n^2 p(x_n) q(x_n) = y_1^2 r(x_1), \dots, y_n^2 r(x_n).$$

where *r* is a polynomial of degree at most 2k - 2.

Hence,

$$(\mathsf{GRS}_k(\boldsymbol{x},\boldsymbol{y}))^{\star 2} = \mathsf{GRS}_{2k-1}(\boldsymbol{x},\boldsymbol{y}\star\boldsymbol{y}).$$

Square-code Distinguisher

 \mathscr{C} a code of length *n* and dimension *k*.

$$\mathscr{C}$$
 random $\Rightarrow \dim \mathscr{C}^{\star 2} = \frac{k(k+1)}{2}.$

$$\mathscr{C} = \mathsf{GRS}_k(\mathbf{x}, \mathbf{y}) \Rightarrow \dim \mathscr{C}^{\star 2} = 2k - 1.$$

Square-code Distinguisher

 \mathscr{C} a code of length *n* and dimension *k*. DIMENSION \leq LENGTH.

$$\begin{aligned} & \mathscr{C} \text{ random} \quad \Rightarrow \quad \dim \mathscr{C}^{\star 2} = \min \left(\frac{k(k+1)}{2}, n \right). \\ & \mathscr{C} = \mathsf{GRS}_k(\mathbf{x}, \mathbf{y}) \quad \Rightarrow \quad \dim \mathscr{C}^{\star 2} = \min \left(2k - 1, n \right). \end{aligned}$$

Square-code Distinguisher

 \mathscr{C} a code of length *n* and dimension *k*. DIMENSION \leq LENGTH.

$$\mathscr{C} \text{ random} \quad \Rightarrow \quad \dim \mathscr{C}^{\star 2} = \min\left(\frac{k(k+1)}{2}, n\right).$$
$$\mathscr{C} = \mathsf{GRS}_k(\mathbf{x}, \mathbf{y}) \quad \Rightarrow \quad \dim \mathscr{C}^{\star 2} = \min\left(2k - 1, n\right).$$

$$\text{Distinguisher works if: } \left\{ \begin{array}{l} \dim \mathscr{C}^{\star 2} < \frac{k(k+1)}{2}, \\ \dim \mathscr{C}^{\star 2} < n. \end{array} \right.$$

Definition (punctured code) Let $\mathscr{C} \subseteq \mathbb{F}_q^n$ and $j \in \llbracket 1, n \rrbracket$. $\mathcal{P}_{\{j\}}(\mathscr{C}) \stackrel{\text{def}}{=} \{(c_i)_{i \in \llbracket 1, n \rrbracket, i \neq j} \text{ s.t. } \boldsymbol{c} \in \mathscr{C}\}.$ Definition (punctured code) Let $\mathscr{C} \subseteq \mathbb{F}_q^n$ and $j \in \llbracket 1, n \rrbracket$. $\mathcal{P}_{\{j\}} (\mathscr{C}) \stackrel{\text{def}}{=} \{ (c_i)_{i \in \llbracket 1, n \rrbracket, i \neq j} \text{ s.t. } \boldsymbol{c} \in \mathscr{C} \}.$

Definition (shortened code)

Let $\mathscr{C} \subseteq \mathbb{F}_q^n$ and $j \in \llbracket 1, n \rrbracket$.

$$\mathcal{S}_{\{j\}}\left(\mathscr{C}
ight) \stackrel{\mathsf{def}}{=} \mathcal{P}_{\{j\}}\left(\{\boldsymbol{c}\in\mathscr{C} \ \mathrm{s.t.} \ \boldsymbol{c}_{j}=0\}
ight).$$

The Tools: Punctured and Shortened Codes

For \mathscr{C} a **random** code of dimension k and length n:

$$\dim \mathscr{C}^{\star 2} = \min\left(\frac{k(k+1)}{2}, \mathbf{n}\right).$$

The Tools: Punctured and Shortened Codes

For
$$\mathscr{C} = \mathsf{GRS}_k(\mathbf{x}, \mathbf{y})$$
:

$$\dim \mathscr{C}^{\star 2} = \min \left(2k - 1, n \right).$$

The Tools: Punctured and Shortened Codes

For
$$\mathscr{C} = \mathsf{GRS}_k(\mathbf{x}, \mathbf{y})$$
:

$$\dim \mathscr{C}^{\star 2} = \min \left(2k - 1, n \right).$$

Repeat until dim $\mathscr{C}^{\star 2} < n$.

A Distinguisher on RLCE

The Scheme

The Attack

The Attack

subcode of length n of a GRS code of dimension k_{GRS}

random code of length r

subcode of length n of a GRS code of dimension k_{GRS}

random code of length r

Lemma

 $\dim \mathscr{A}^{\star 2} \leqslant 2k_{GRS} + r - 1.$

If the equality holds, then for every $i \in [n+1, n+w]$:

$$\dim \mathcal{P}_{\{i\}}\left(\mathscr{A}^{\star 2}\right) = \dim \mathscr{A}^{\star 2} - 1.$$

 $\mathscr{A} \subseteq \mathscr{A}_{GRS} + \mathscr{A}_{Rand}$

$$\mathscr{A} \subseteq \mathscr{A}_{GRS} + \mathscr{A}_{Rand}$$

$$\begin{split} \mathscr{A}^{\star 2} &\subseteq \left(\mathscr{A}_{GRS} + \mathscr{A}_{Rand}
ight)^{\star 2} \ &\subseteq \mathscr{A}_{GRS}^{\star 2} + \mathscr{A}_{Rand}^{\star 2} + \mathscr{A}_{GRS} \star \mathscr{A}_{Rand} \ &\subseteq \mathscr{A}_{GRS}^{\star 2} + \mathscr{A}_{Rand}^{\star 2} \end{split}$$

$$\mathscr{A} \subseteq \mathscr{A}_{GRS} + \mathscr{A}_{Rand}$$

$$\mathcal{A}^{*2} \subseteq \left(\mathcal{A}_{GRS} + \mathcal{A}_{Rand}\right)^{*2}$$
$$\subseteq \mathcal{A}_{GRS}^{*2} + \mathcal{A}_{Rand}^{*2} + \mathcal{A}_{GRS} * \mathcal{A}_{Rand}$$
$$\subseteq \mathcal{A}_{GRS}^{*2} + \mathcal{A}_{Rand}^{*2}$$

$$\dim \mathscr{A}^{\star 2} \leqslant \dim \mathscr{A}^{\star 2}_{GRS} + \dim \mathscr{A}^{\star 2}_{Rand}$$
$$\leqslant 2k_{GRS} - 1 + r$$

If the equality holds, then for every $i \in [n+1, n+w]$:

$$\dim \mathcal{P}_{\{i\}}\left(\mathscr{A}^{\star 2}\right) = \dim \mathscr{A}^{\star 2} - 1.$$

 $\mathscr{C}\stackrel{\mathsf{def}}{=}$ GRS

$$\mathscr{C} \stackrel{\mathsf{def}}{=}$$
 or

Theorem

$$\dim \mathscr{C}^{\star 2} = \min \left(2(k+w) - 1, \, n+w \right).$$

Theorem

dim
$$\mathscr{C}'^{\star 2} = \min(2(k+w-1)-1, n+w-1).$$

Proof

Proof.

By construction, there is

- a polynomial $f \in \mathbb{F}_q[x]_{<k}$ (the GRS part) ;
- a linear form ψ (the random part) ;
- elements $a, b, c, d \in \mathbb{F}_q$ (the mixing)

such that, at position *i*, for any $\boldsymbol{c} \in \mathscr{C}$, we have

$$c_i = a \cdot y_j f(x_j) + c \cdot \psi(f),$$

 $c_{\tau(i)} = b \cdot y_j f(x_j) + d \cdot \psi(f).$

Proof.

$$c_i = a \cdot y_j f(x_j) + c \cdot \psi(f),$$

 $c_{\tau(i)} = b \cdot y_j f(x_j) + d \cdot \psi(f).$

Proof.

$$egin{aligned} c_i &= a \cdot y_j f(x_j) + c \cdot \psi(f), \ c_{ au(i)} &= b \cdot y_j f(x_j) + d \cdot \psi(f). \end{aligned}$$

Shortening in $i \Leftrightarrow f \in \mathbb{F}_q[x]_{\leq k}$ s.t. $c_i = 0$.

i.e. $\psi(f) = -c^{-1}ay_jf(x_j)$.

Proof.

$$egin{aligned} c_i &= a \cdot y_j f(x_j) + c \cdot \psi(f), \ c_{ au(i)} &= b \cdot y_j f(x_j) + d \cdot \psi(f). \end{aligned}$$

Shortening in $i \Leftrightarrow f \in \mathbb{F}_q[x]_{\leq k}$ s.t. $c_i = 0$.

i.e.
$$\psi(f) = -c^{-1}ay_jf(x_j)$$
.

Therefore, for any $\boldsymbol{c}\in\mathcal{S}_{\left\{i
ight\}}\left(\mathscr{C}
ight)$, we have

$$c_{ au(i)} = (b - dac^{-1})y_j f(x_j).$$

dim
$$\mathscr{C}'^{\star 2} = \min(2(k+w-1)-1, n+w-1).$$

$$\dim \mathscr{C}'^{\star 2} = \min \left(2(k + w - \ell) - 1, n + w - \ell \right).$$

$$\dim \mathscr{C}'^{\star 2} = \min \left(2(k + w - \ell) - 1, \, n + w - \ell \right).$$

Independently of the shortened positions!

$$\dim \mathscr{C}'^{\star 2} = \min \left(2(k + w - \ell) - 1, n + w - \ell \right).$$

Independently of the shortened positions!

Conditions

$$\dim \mathscr{C}'^{\star 2} < \binom{k+1-\ell}{2},$$

$$\dim \mathscr{C}'^{\star 2} < n + w - \ell.$$

Conditions

$$\min(2(k+w-\ell)-1, n+w-\ell) < \binom{k+1-\ell}{2},$$

$$\min(2(k+w-\ell)-1, n+w-\ell) < n+w-\ell.$$

Conditions

$$\ell < k - \frac{3 + \sqrt{16w + 1}}{2},$$

$$w+2k-n \ge \ell.$$

Conditions

$$\ell < k - \frac{3 + \sqrt{16w + 1}}{2},$$

$$w+2k-n \ge \ell.$$

Consequence: works only if

$$n-k > w + \frac{3+\sqrt{16w+1}}{2} = w + O(\sqrt{w}),$$

i.e. works up to values of w that are close to n - k.

Conditions

$$\ell < k - \frac{3 + \sqrt{16w + 1}}{2},$$

$$w+2k-n \ge \ell.$$

Consequence: works only if

$$n-k > w + \frac{3+\sqrt{16w+1}}{2} = w + O(\sqrt{w}),$$

i.e. works up to values of w that are close to n - k.

Conclusion

The distinguisher works for RLCE-short but not for RLCE-long.

The Attack

The Attack

1. Choose the value of ℓ .

- 1. Choose the value of $\ell.$
- 2. Shorten on ℓ positions. Identify pairs of twin positions.

Attack Outline

- 1. Choose the value of $\ell.$
- 2. Shorten on ℓ positions. Identify pairs of twin positions. Repeat.

- 1. Choose the value of ℓ .
- 2. Shorten on ℓ positions. Identify pairs of twin positions. Repeat.
- 3. Puncture the twin positions to get a GRS code. Apply the Sidelnikov Shestakov attack.

- 1. Choose the value of ℓ .
- 2. Shorten on ℓ positions. Identify pairs of twin positions. Repeat.
- 3. Puncture the twin positions to get a GRS code. Apply the Sidelnikov Shestakov attack.
- 4. For each pair of twin positions, recover the mixing matrix.

- 1. Choose the value of ℓ .
- 2. Shorten on ℓ positions. Identify pairs of twin positions. Repeat.
- 3. Puncture the twin positions to get a GRS code. Apply the Sidelnikov Shestakov attack.
- 4. For each pair of twin positions, recover the mixing matrix.
- 5. Finish to recover the structure of the GRS code.

Constraint: $\ell_{\min} \leqslant \ell < \ell_{\max}$, where:

$$\ell_{\min} = w + 2k - n$$

$$\ell_{\max} = \left[k - \frac{3 + \sqrt{16w + 1}}{2} - 1\right].$$

Choice:

$$\ell \stackrel{\text{def}}{=} \ell_{\max} - 1.$$

1. Choose the value of ℓ .

- 1. Choose the value of $\ell.$
- 2. Shorten on ℓ positions. Identify pairs of twin positions.

Choose a subset of columns to shorten:

$$\mathcal{L} \subseteq \llbracket 1, n + w \rrbracket$$
 s.t. $|\mathcal{L}| = \ell$.

Choose a subset of columns to shorten:

$$\mathcal{L} \subseteq \llbracket 1, n + w \rrbracket$$
 s.t. $|\mathcal{L}| = \ell$.

Idea: Check for all positions $i \in \llbracket 1, n + w \rrbracket \setminus \mathcal{L}$:

$$\dim \left(\mathcal{S}_{\mathcal{L}} \left(\mathscr{C} \right) \right)^{\star 2} \stackrel{?}{=} \dim \left(\mathcal{P}_{\{i\}} \left(\mathcal{S}_{\mathcal{L}} \left(\mathscr{C} \right) \right) \right)^{\star 2}.$$

Choose a subset of columns to shorten:

$$\mathcal{L} \subseteq \llbracket 1, n + w \rrbracket$$
 s.t. $|\mathcal{L}| = \ell$.

Idea: Check for all positions $i \in \llbracket 1, n + w \rrbracket \setminus \mathcal{L}$:

$$\dim \left(\mathcal{S}_{\mathcal{L}} \left(\mathscr{C} \right) \right)^{\star 2} \stackrel{?}{=} \dim \left(\mathcal{P}_{\{i\}} \left(\mathcal{S}_{\mathcal{L}} \left(\mathscr{C} \right) \right) \right)^{\star 2}.$$

Case 1 $i \in \mathcal{I}_{\mathrm{GRS}} \Rightarrow$ the dimension does not change ;

Choose a subset of columns to shorten:

$$\mathcal{L} \subseteq \llbracket 1, n + w \rrbracket$$
 s.t. $|\mathcal{L}| = \ell$.

Idea: Check for all positions $i \in \llbracket 1, n + w \rrbracket \setminus \mathcal{L}$:

$$\dim \left(\mathcal{S}_{\mathcal{L}} \left(\mathscr{C} \right) \right)^{\star 2} \stackrel{?}{=} \dim \left(\mathcal{P}_{\{i\}} \left(\mathcal{S}_{\mathcal{L}} \left(\mathscr{C} \right) \right) \right)^{\star 2}$$

Case 1 $i \in \mathcal{I}_{GRS} \Rightarrow$ the dimension does not change ;

Case 2 $i \in \mathcal{I}_{PR}$ and $\tau(i) \in \mathcal{L}$: position i is "derandomized" in $\mathcal{S}_{\mathcal{L}}(\mathscr{C})$ and behaves like a GRS position \Rightarrow see Case 1;

Choose a subset of columns to shorten:

$$\mathcal{L} \subseteq \llbracket 1, n + w \rrbracket$$
 s.t. $|\mathcal{L}| = \ell$.

Idea: Check for all positions $i \in \llbracket 1, n + w \rrbracket \setminus \mathcal{L}$:

$$\dim \left(\mathcal{S}_{\mathcal{L}} \left(\mathscr{C} \right) \right)^{\star 2} \stackrel{?}{=} \dim \left(\mathcal{P}_{\{i\}} \left(\mathcal{S}_{\mathcal{L}} \left(\mathscr{C} \right) \right) \right)^{\star 2}$$

Case 1 $i \in \mathcal{I}_{\mathrm{GRS}} \Rightarrow$ the dimension does not change ;

Case 2 $i \in \mathcal{I}_{PR}$ and $\tau(i) \in \mathcal{L}$: position i is "derandomized" in $\mathcal{S}_{\mathcal{L}}(\mathscr{C})$ and behaves like a GRS position \Rightarrow see Case 1;

Case 3 $i \in \mathcal{I}_{PR}$ and $\tau(i) \notin \mathcal{L}$: the column behaves like a random one \Rightarrow puncturing reduces the dimension.

Choose a subset of columns to shorten:

$$\mathcal{L} \subseteq \llbracket 1, n + w \rrbracket$$
 s.t. $|\mathcal{L}| = \ell$.

Idea: Check for all positions $i \in \llbracket 1, n + w \rrbracket \setminus \mathcal{L}$:

$$\dim \left(\mathcal{S}_{\mathcal{L}} \left(\mathscr{C} \right) \right)^{\star 2} \stackrel{?}{=} \dim \left(\mathcal{P}_{\{i\}} \left(\mathcal{S}_{\mathcal{L}} \left(\mathscr{C} \right) \right) \right)^{\star 2}$$

Case 1 $i \in \mathcal{I}_{\mathrm{GRS}} \Rightarrow$ the dimension does not change ;

Case 2 $i \in \mathcal{I}_{PR}$ and $\tau(i) \in \mathcal{L}$: position i is "derandomized" in $\mathcal{S}_{\mathcal{L}}(\mathscr{C})$ and behaves like a GRS position \Rightarrow see Case 1;

Case 3 $i \in \mathcal{I}_{PR}$ and $\tau(i) \notin \mathcal{L}$: the column behaves like a random one \Rightarrow puncturing reduces the dimension.

This gives
$$\mathcal{T}_{\mathcal{L}} \stackrel{\text{def}}{=} \mathcal{I}_{\mathrm{PR}} \cap (\llbracket 1, n + w \rrbracket \setminus \mathcal{L})$$
.

Step 2b: match twin positions

For $i \in \mathcal{T}_{\mathcal{L}}$, how to identify $\tau(i)$?

Step 2b: match twin positions

For $i \in \mathcal{T}_{\mathcal{L}}$, how to identify $\tau(i)$?

Idea: Check for all positions $j \in \mathcal{T}_{\mathcal{L}} \setminus \{i\}$:

$$\dim \left(\mathcal{S}_{\mathcal{L} \cup \{i\}} \left(\mathscr{C} \right) \right)^{\star 2} \stackrel{?}{=} \dim \left(\mathcal{P}_{\{j\}} \left(\mathcal{S}_{\mathcal{L} \cup \{i\}} \left(\mathscr{C} \right) \right) \right)^{\star 2}$$

٠

Step 2b: match twin positions

For $i \in \mathcal{T}_{\mathcal{L}}$, how to identify $\tau(i)$?

Idea: Check for all positions $j \in \mathcal{T}_{\mathcal{L}} \setminus \{i\}$:

$$\dim \left(\mathcal{S}_{\mathcal{L} \cup \{i\}} \left(\mathscr{C} \right) \right)^{\star 2} \stackrel{?}{=} \dim \left(\mathcal{P}_{\{j\}} \left(\mathcal{S}_{\mathcal{L} \cup \{i\}} \left(\mathscr{C} \right) \right) \right)^{\star 2}$$

Case 1 $j = \tau(i)$: position j is "derandomized" in $S_{\mathcal{L} \cup \{i\}}(\mathscr{C})$ and behaves like a GRS position

 \Rightarrow the dimension does not change ;
Step 2b: match twin positions

For $i \in \mathcal{T}_{\mathcal{L}}$, how to identify $\tau(i)$?

Idea: Check for all positions $j \in \mathcal{T}_{\mathcal{L}} \setminus \{i\}$:

$$\dim \left(\mathcal{S}_{\mathcal{L} \cup \{i\}} \left(\mathscr{C} \right) \right)^{\star 2} \stackrel{?}{=} \dim \left(\mathcal{P}_{\{j\}} \left(\mathcal{S}_{\mathcal{L} \cup \{i\}} \left(\mathscr{C} \right) \right) \right)^{\star 2}$$

Case 1 $j = \tau(i)$: position j is "derandomized" in $S_{\mathcal{L}\cup\{i\}}(\mathscr{C})$ and behaves like a GRS position \Rightarrow the dimension does not change ;

 \rightarrow the dimension does not change,

Case 2 $j \neq \tau(i)$: the column behaves like a random one \Rightarrow puncturing reduces the dimension.

Step 2b: match twin positions

For $i \in \mathcal{T}_{\mathcal{L}}$, how to identify $\tau(i)$?

Idea: Check for all positions $j \in \mathcal{T}_{\mathcal{L}} \setminus \{i\}$:

$$\dim \left(\mathcal{S}_{\mathcal{L} \cup \{i\}} \left(\mathscr{C} \right) \right)^{\star 2} \stackrel{?}{=} \dim \left(\mathcal{P}_{\{j\}} \left(\mathcal{S}_{\mathcal{L} \cup \{i\}} \left(\mathscr{C} \right) \right) \right)^{\star 2}$$

Case 1 $j = \tau(i)$: position j is "derandomized" in $S_{\mathcal{L}\cup\{i\}}(\mathscr{C})$ and behaves like a GRS position \Rightarrow the dimension does not change ;

Case 2 $j \neq \tau(i)$: the column behaves like a random one

 \Rightarrow puncturing reduces the dimension.

Repeat Step 2 with random choices of \mathcal{L} until you identify all twin positions.

Attack Outline

- 1. Choose the value of $\ell.$
- 2. Shorten on ℓ positions. Identify pairs of twin positions. Repeat.

- 1. Choose the value of ℓ .
- 2. Shorten on ℓ positions. Identify pairs of twin positions. Repeat.
- 3. Puncture the twin positions to get a GRS code. Apply the Sidelnikov Shestakov attack.

- 1. Choose the value of ℓ .
- 2. Shorten on ℓ positions. Identify pairs of twin positions. Repeat.
- 3. Puncture the twin positions to get a GRS code. Apply the Sidelnikov Shestakov attack.
- 4. For each pair of twin positions, recover the mixing matrix.

For $\{i, \tau(i)\}$ a pair of twin positions, how to recover the GRS and the random column ?

For $\{i, \tau(i)\}$ a pair of twin positions, how to recover the GRS and the random column ?

For $\{i, \tau(i)\}$ a pair of twin positions, how to recover the GRS and the random column ?

Idea: Use derandomization!

By construction, there is

- a polynomial $f \in \mathbb{F}_q[x]_{<k}$ (the GRS part) ;
- a linear form ψ (the random part) ;
- elements $a, b, c, d \in \mathbb{F}_q$ (the mixing)

such that, at position *i*, for any $\boldsymbol{c} \in \mathscr{C}^{(i)}$, we have

$$c_i = a \cdot y_j f(x_j) + c \cdot \psi(f),$$

 $c_{\tau(i)} = b \cdot y_j f(x_j) + d \cdot \psi(f).$

By construction, there is

- a polynomial $f \in \mathbb{F}_q[x]_{<k}$ (the GRS part) ;
- a linear form ψ (the random part) ;
- elements $a, b, c, d \in \mathbb{F}_q$ (the mixing)

such that, at position i, for any $\boldsymbol{c} \in \mathscr{C}^{(i)},$ we have

$$c_i = a \cdot f(x_j) + c \cdot \psi(f),$$

 $c_{\tau(i)} = b \cdot f(x_j) + \psi(f).$

By construction, there is

- a polynomial $f \in \mathbb{F}_q[x]_{\leq k}$ (the GRS part);
- a linear form ψ (the random part) ;
- elements $a, b, c, d \in \mathbb{F}_q$ (the mixing)

such that, at position *i*, for any $\boldsymbol{c} \in \mathscr{C}^{(i)}$, we have

$$c_i = a \cdot f(x_j) + c \cdot \psi(f),$$

$$c_{\tau(i)} = b \cdot f(x_j) + \psi(f).$$

Shortening in $i \Leftrightarrow f \in \mathbb{F}_q[x]_{\leq k}$ s.t. $c_i = 0$.

By construction, there is

- a polynomial $f \in \mathbb{F}_q[x]_{<k}$ (the GRS part) ;
- a linear form ψ (the random part) ;
- elements $a, b, c, d \in \mathbb{F}_q$ (the mixing)

such that, at position *i*, for any $\boldsymbol{c} \in \mathscr{C}^{(i)}$, we have

 $c_i = a \cdot f(x_j) + c \cdot \psi(f),$ $c_{\tau(i)} = b \cdot f(x_j) + \psi(f).$

Shortening in $i \Leftrightarrow f \in \mathbb{F}_q[x]_{\leq k}$ s.t. $c_i = 0$.

Therefore, for any $\boldsymbol{c} \in \mathcal{S}_{\{i\}}\left(\mathscr{C}^{(i)}
ight)$, we have

 $c_{\tau(i)}=(b-ac^{-1})f(x_j).$

$$c_{\tau(i)} = (b - ac^{-1})f(x_j).$$

$$c_{\tau(i)} = (b - ac^{-1})f(x_j).$$

- Collect a basis of codewords in $S_{\{i\}}(\mathscr{C}^{(i)})$,
- Find the corresponding $f \in \mathbb{F}_q[x]_{<k}$ by interpolation on the known GRS positions,
- Deduce the value of $(b ac^{-1})$ and x_j .

$$c_{\tau(i)} = (b - ac^{-1})f(x_j).$$

- Collect a basis of codewords in $S_{\{i\}}(\mathscr{C}^{(i)})$,
- Find the corresponding $f \in \mathbb{F}_q[x]_{<k}$ by interpolation on the known GRS positions,
- Deduce the value of $(b ac^{-1})$ and x_j .

Still need to find a, b and c.

$$c_{\tau(i)} = (b - ac^{-1})f(x_j).$$

- Collect a basis of codewords in $S_{\{i\}}(\mathscr{C}^{(i)})$,
- Find the corresponding $f \in \mathbb{F}_q[x]_{<k}$ by interpolation on the known GRS positions,
- Deduce the value of $(b ac^{-1})$ and x_j .

Still need to find *a*, *b* and *c*.

Bruteforce works ($\mathbb{F}_q = 2^{10}$). Or use another technical trick.

- 1. Choose the value of ℓ .
- 2. Shorten on ℓ positions. Identify pairs of twin positions. Repeat.
- 3. Puncture the twin positions to get a GRS code. Apply the Sidelnikov Shestakov attack.
- 4. For each pair of twin positions, recover the mixing matrix.

- 1. Choose the value of ℓ .
- 2. Shorten on ℓ positions. Identify pairs of twin positions. Repeat.
- 3. Puncture the twin positions to get a GRS code. Apply the Sidelnikov Shestakov attack.
- 4. For each pair of twin positions, recover the mixing matrix.
- 5. Finish to recover the structure of the GRS code.

-

- Recovered the GRS structure of **RLCE-short**.

- Recovered the GRS structure of RLCE-short.
- Complexity in $\mathcal{O}(wn^2k^2)$ operations in \mathbb{F}_q .

- Recovered the GRS structure of RLCE-short.
- Complexity in $\mathcal{O}(wn^2k^2)$ operations in \mathbb{F}_q .
- Parameters of RLCE-long remain out of reach.

- Recovered the GRS structure of RLCE-short.
- Complexity in $\mathcal{O}(wn^2k^2)$ operations in \mathbb{F}_q .
- Parameters of RLCE-long remain out of reach.

https://arxiv.org/abs/1805.11489

Thank you for your attention!