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To instanciate a secure code-based cryptographic scheme, one
needs a family of codes such that:

1. there exists good decoding algorithm ;

2. the randomized version of the code is indistinguishable from a
random code;
→ key security

3. it is computationaly hard to correct the errors whithout
knowing of the structure of the code (message security).
→ message security
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Definition (Generalised Reed Solomon codes)
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Sidelnikov Shestakov (1992)
Given a generator matrix of a GRS code C , it is possible to find x
and y such that C = GRSk(x , y).
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Parameters

Table: Set of parameters for RLCE-short.

Claimed security n k t w q Public key size (kB)

128 532 376 78 96 210 118
192 846 618 114 144 210 287
256 1160 700 230 311 211 742

Table: Set of parameters for RLCE-long.

Claimed security n k t w q Public key size (kB)

128 630 470 80 160 210 188
192 1000 764 118 236 210 450
256 1360 800 280 560 211 1232
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The Tools: Square-code Distinguisher

Proof.
Let c and c ′ ∈ GRSk(x , y).

c = (y1p(x1), . . . , ynp(xn)), c ′ = (y1q(x1), . . . , ynq(xn))

where p and q are two polynomials of degree at most k − 1.

c ? c ′ = y2
1p(x1)q(x1), . . . , y

2
np(xn)q(xn)

= y2
1 r(x1), . . . , y

2
n r(xn).

where r is a polynomial of degree at most 2k − 2.

Hence,
(GRSk(x , y))?2 = GRS2k−1(x , y ? y).
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The Tools: Punctured and Shortened Codes

Definition (punctured code)
Let C ⊆ Fn

q and j ∈ J1, nK.

P{j} (C )
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= {(ci )i∈J1,nK,i 6=j s.t. c ∈ C }.

Definition (shortened code)
Let C ⊆ Fn

q and j ∈ J1, nK.

S{j} (C )
def
= P{j} ({c ∈ C s.t. cj = 0}) .
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The Tools: Punctured and Shortened Codes

For C a random code of dimension k and length n:

C random C ′ = S (C )

length = n −→ length n′ = n − 1
dimension = k dimension k ′ = k − 1

dimC ?2 = min
(
k(k+1)

2 , n
)
.

Repeat until dimC ?2 < n.
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Lemma : GRS+Rand

A
def
= GRS Rand

subcode of length n
blabla of a GRS code

of dimension kGRS

blabla random code of length r

Lemma

dimA ?2 6 2kGRS + r − 1.

If the equality holds, then for every i ∈ Jn + 1, n + wK:

dimP{i}
(
A ?2) = dimA ?2 − 1.
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Derandomization Lemma

Lemma

GRS

↓ shortening one PR column ↓

GRS



Derandomization Lemma

Proof.
By construction, there is

- a polynomial f ∈ Fq[x ]<k (the GRS part) ;

- a linear form ψ (the random part) ;

- elements a, b, c , d ∈ Fq (the mixing)

such that, at position i , for any c ∈ C , we have

ci = a · yj f (xj) + c · ψ(f ),

cτ(i) = b · yj f (xj) + d · ψ(f ).

Shortening in i ⇔ f ∈ Fq[x ]<k s.t. ci = 0.

i.e. ψ(f ) = −c−1ayj f (xj).

Therefore, for any c ∈ S{i} (C ), we have

cτ(i) = (b − dac−1)yj f (xj).
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Attack Outline

1. Choose the value of `.

2. Shorten on ` positions.
Identify pairs of twin positions.
Repeat.

3. Puncture the twin positions to get a GRS code.
Apply the Sidelnikov Shestakov attack.

4. For each pair of twin positions, recover the mixing matrix.

5. Finish to recover the structure of the GRS code.
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Step 1: choose `

Constraint: `min 6 ` < `max, where:

`min = w + 2k − n

`max =

⌈
k − 3+

√
16w + 1
2

− 1
⌉
·

Choice:
`

def
= `max − 1.
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Step 2a: identify PR positions

Choose a subset of columns to shorten:

L ⊆ J1, n + wK s.t. |L| = `.

Idea: Check for all positions i ∈ J1, n + wK \ L:

dim (SL (C ))?2
?
= dim

(
P{i} (SL (C ))

)?2
.

Case 1 i ∈ IGRS ⇒ the dimension does not change ;

Case 2 i ∈ IPR and τ(i) ∈ L: position i is “derandomized” in SL (C )

and behaves like a GRS position ⇒ see Case 1 ;

Case 3 i ∈ IPR and τ(i) 6∈ L: the column behaves like a random one
⇒ puncturing reduces the dimension.

This gives TL
def
= IPR ∩ (J1, n + wK \ L) .
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Step 2b: match twin positions

For i ∈ TL, how to identify τ(i) ?

Idea: Check for all positions j ∈ TL \ {i}:

dim
(
SL∪{i} (C )

)?2 ?
= dim

(
P{j}

(
SL∪{i} (C )

))?2
.

Case 1 j = τ(i) : position j is “derandomized” in SL∪{i} (C ) and
behaves like a GRS position
⇒ the dimension does not change ;

Case 2 j 6= τ(i) : the column behaves like a random one
⇒ puncturing reduces the dimension.

Repeat Step 2 with random choices of L
until you identify all twin positions.
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Step 4: recover the mixing matrix
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how to recover the GRS and the random column ?

C (i) def
= GRS
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Step 4: recover the mixing matrix (2)

By construction, there is

- a polynomial f ∈ Fq[x ]<k (the GRS part) ;
- a linear form ψ (the random part) ;
- elements a, b, c , d ∈ Fq (the mixing)

such that, at position i , for any c ∈ C (i), we have

ci = a · yj f (xj) + c · ψ(f ),

cτ(i) = b · yj f (xj) + d · ψ(f ).

Shortening in i ⇔ f ∈ Fq[x ]<k s.t. ci = 0.

Therefore, for any c ∈ S{i}
(
C (i)

)
, we have

cτ(i) = (b − ac−1)f (xj).



Step 4: recover the mixing matrix (2)

By construction, there is

- a polynomial f ∈ Fq[x ]<k (the GRS part) ;
- a linear form ψ (the random part) ;
- elements a, b, c , d ∈ Fq (the mixing)

such that, at position i , for any c ∈ C (i), we have

ci = a · f (xj) + c · ψ(f ),

cτ(i) = b · f (xj) + ψ(f ).

Shortening in i ⇔ f ∈ Fq[x ]<k s.t. ci = 0.

Therefore, for any c ∈ S{i}
(
C (i)

)
, we have

cτ(i) = (b − ac−1)f (xj).



Step 4: recover the mixing matrix (2)

By construction, there is

- a polynomial f ∈ Fq[x ]<k (the GRS part) ;
- a linear form ψ (the random part) ;
- elements a, b, c , d ∈ Fq (the mixing)

such that, at position i , for any c ∈ C (i), we have

ci = a · f (xj) + c · ψ(f ),

cτ(i) = b · f (xj) + ψ(f ).

Shortening in i ⇔ f ∈ Fq[x ]<k s.t. ci = 0.

Therefore, for any c ∈ S{i}
(
C (i)

)
, we have

cτ(i) = (b − ac−1)f (xj).



Step 4: recover the mixing matrix (2)

By construction, there is

- a polynomial f ∈ Fq[x ]<k (the GRS part) ;
- a linear form ψ (the random part) ;
- elements a, b, c , d ∈ Fq (the mixing)

such that, at position i , for any c ∈ C (i), we have

ci = a · f (xj) + c · ψ(f ),

cτ(i) = b · f (xj) + ψ(f ).

Shortening in i ⇔ f ∈ Fq[x ]<k s.t. ci = 0.

Therefore, for any c ∈ S{i}
(
C (i)

)
, we have

cτ(i) = (b − ac−1)f (xj).



Step 4: recover the mixing matrix (3)
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- Collect a basis of codewords in S{i}
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C (i)

)
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- Find the corresponding f ∈ Fq[x ]<k by interpolation on the
known GRS positions,

- Deduce the value of (b − ac−1) and xj .

Still need to find a, b and c.

Bruteforce works (Fq = 210).
Or use another technical trick.
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