
Recovering short secret keys of RLCE
KEM in polynomial time
GT “Butte aux Cailles”, January 17, 2019

Alain Couvreur1, Matthieu Lequesne2,3 and Jean-Pierre Tillich3

1 - Inria Saclay – team Grace, École polytechnique
2 - Sorbonne Université Paris
3 - Inria Paris – team Secret

Context

Public Key Cryptography

... 1011010001101

RSA [1977]

++

[1994]

///////////
???

Public Key Cryptography

... 1011010001101

RSA [1977]

++

[1994]

///////////
???

Public Key Cryptography

... 1011010001101

RSA [1977]

++

[1994]

///////////
???

Post-Quantum Cryptography

Post-Quantum Cryptography

Lattice Codes

McEliece
Goppa
[1978]

?

Hash Multivariate Isogenies

Code-based cryptosystem (à la McEliece)

Main goal: achieve relatively short keys

Post-Quantum Cryptography

Post-Quantum Cryptography

Lattice Codes

McEliece
Goppa
[1978]

?

Hash Multivariate Isogenies

Code-based cryptosystem (à la McEliece)

Main goal: achieve relatively short keys

Post-Quantum Cryptography

Post-Quantum Cryptography

Lattice Codes

McEliece
Goppa
[1978]

?

Hash Multivariate Isogenies

Code-based cryptosystem (à la McEliece)

Main goal: achieve relatively short keys

Post-Quantum Cryptography

Post-Quantum Cryptography

Lattice Codes

McEliece
Goppa
[1978]

?

Hash Multivariate Isogenies

Code-based cryptosystem (à la McEliece)

Main goal: achieve relatively short keys

Post-Quantum Cryptography

Post-Quantum Cryptography

Lattice Codes

McEliece
Goppa
[1978]

?

Hash Multivariate Isogenies

Code-based cryptosystem (à la McEliece)

Main goal: achieve relatively short keys

Code Based Cryptography

To instanciate a secure code-based cryptographic scheme, one
needs a family of codes such that:

1. there exists good decoding algorithm ;

2. the randomized version of the code is indistinguishable from a
random code;
→ key security

3. it is computationaly hard to correct the errors whithout
knowing of the structure of the code (message security).
→ message security

Code Based Cryptography

To instanciate a secure code-based cryptographic scheme, one
needs a family of codes such that:

1. there exists good decoding algorithm ;

2. the randomized version of the code is indistinguishable from a
random code;
→ key security

3. it is computationaly hard to correct the errors whithout
knowing of the structure of the code (message security).
→ message security

Code Based Cryptography

To instanciate a secure code-based cryptographic scheme, one
needs a family of codes such that:

1. there exists good decoding algorithm ;

2. the randomized version of the code is indistinguishable from a
random code;
→ key security

3. it is computationaly hard to correct the errors whithout
knowing of the structure of the code (message security).
→ message security

Code Based Cryptography

To instanciate a secure code-based cryptographic scheme, one
needs a family of codes such that:

1. there exists good decoding algorithm ;

2. the randomized version of the code is indistinguishable from a
random code;
→ key security

3. it is computationaly hard to correct the errors whithout
knowing of the structure of the code (message security).
→ message security

The RLCE Scheme

Context: RLCE

- NIST call for post-quantum cryptography standardization;

- Key Encapsulation Mechanism;

- Proposed by Yonggee Wang (UNC Charlotte);

- Code-based cryptosystem (à la McEliece);

- Idea: mix a GRS code with random columns.

Context: RLCE

- NIST call for post-quantum cryptography standardization;

- Key Encapsulation Mechanism;

- Proposed by Yonggee Wang (UNC Charlotte);

- Code-based cryptosystem (à la McEliece);

- Idea: mix a GRS code with random columns.

Generalised Reed Solomon codes

Definition (Generalised Reed Solomon codes)

The generalised Reed–Solomon (GRS) code with support x and
multiplier y of dimension k is defined as

GRSk(x , y)
def
= {(y1f (x1), . . . , ynf (xn)) | f ∈ Fq[x]<k} .

Sidelnikov Shestakov (1992)
Given a generator matrix of a GRS code C , it is possible to find x
and y such that C = GRSk(x , y).

Generalised Reed Solomon codes

Definition (Generalised Reed Solomon codes)

The generalised Reed–Solomon (GRS) code with support x and
multiplier y of dimension k is defined as

GRSk(x , y)
def
= {(y1f (x1), . . . , ynf (xn)) | f ∈ Fq[x]<k} .

Sidelnikov Shestakov (1992)
Given a generator matrix of a GRS code C , it is possible to find x
and y such that C = GRSk(x , y).

The Scheme
n w

G 0|R = GRS Random

G 1 = GRS

G 2 = GRS

G =

G 0 ← GRS(n, k)

R ← Fk×w
q

G 1
def
= mix(G 0,R)

Ai ← F2×2
q

A def
=


I n−w (0)

A1

. . .
(0) Aw


G 2

def
= G 1A

P ← Sn+w

G def
= G 2P

The Scheme
n w

G 0|R = GRS Random

G 1 = GRS

G 2 = GRS

G =

G 0 ← GRS(n, k)

R ← Fk×w
q

G 1
def
= mix(G 0,R)

Ai ← F2×2
q

A def
=


I n−w (0)

A1

. . .
(0) Aw


G 2

def
= G 1A

P ← Sn+w

G def
= G 2P

The Scheme
n w

G 0|R = GRS Random

G 1 = GRS

G 2 = GRS

G =

G 0 ← GRS(n, k)

R ← Fk×w
q

G 1
def
= mix(G 0,R)

Ai ← F2×2
q

A def
=


I n−w (0)

A1

. . .
(0) Aw


G 2

def
= G 1A

P ← Sn+w

G def
= G 2P

The Scheme
n w

G 0|R = GRS Random

G 1 = GRS

G 2 = GRS

G =

G 0 ← GRS(n, k)

R ← Fk×w
q

G 1
def
= mix(G 0,R)

Ai ← F2×2
q

A def
=


I n−w (0)

A1

. . .
(0) Aw


G 2

def
= G 1A

P ← Sn+w

G def
= G 2P

The Scheme
n w

G 0|R = GRS Random

G 1 = GRS

G 2 = GRS

G =

G 0 ← GRS(n, k)

R ← Fk×w
q

G 1
def
= mix(G 0,R)

Ai ← F2×2
q

A def
=


I n−w (0)

A1

. . .
(0) Aw


G 2

def
= G 1A

P ← Sn+w

G def
= G 2P

Attacker’s point of view:
Given G :

- which column is blabla ? → GRS

- which column is blabla ? → PR

RLCE-short vs. RLCE-long:
Depends on the size of w .

- RLCE-short: w ≈ n−k
2 ;

- RLCE-long: w = n − k .

Purpose of this talk :
Understand why we manage to break RLCE-
short but not RLCE-long.

The Scheme
n w

G 0|R = GRS Random

G 1 = GRS

G 2 = GRS

G =

G 0 ← GRS(n, k)

R ← Fk×w
q

G 1
def
= mix(G 0,R)

Ai ← F2×2
q

A def
=


I n−w (0)

A1

. . .
(0) Aw


G 2

def
= G 1A

P ← Sn+w

G def
= G 2P

Attacker’s point of view:
Given G :

- which column is blabla ? → GRS

- which column is blabla ? → PR

RLCE-short vs. RLCE-long:
Depends on the size of w .

- RLCE-short: w ≈ n−k
2 ;

- RLCE-long: w = n − k .

Purpose of this talk :
Understand why we manage to break RLCE-
short but not RLCE-long.

The Scheme
n w

G 0|R = GRS Random

G 1 = GRS

G 2 = GRS

G =

G 0 ← GRS(n, k)

R ← Fk×w
q

G 1
def
= mix(G 0,R)

Ai ← F2×2
q

A def
=


I n−w (0)

A1

. . .
(0) Aw


G 2

def
= G 1A

P ← Sn+w

G def
= G 2P

Attacker’s point of view:
Given G :

- which column is blabla ? → GRS

- which column is blabla ? → PR

RLCE-short vs. RLCE-long:
Depends on the size of w .

- RLCE-short: w ≈ n−k
2 ;

- RLCE-long: w = n − k .

Purpose of this talk :
Understand why we manage to break RLCE-
short but not RLCE-long.

Parameters

Table: Set of parameters for RLCE-short.

Claimed security n k t w q Public key size (kB)

128 532 376 78 96 210 118
192 846 618 114 144 210 287
256 1160 700 230 311 211 742

Table: Set of parameters for RLCE-long.

Claimed security n k t w q Public key size (kB)

128 630 470 80 160 210 188
192 1000 764 118 236 210 450
256 1360 800 280 560 211 1232

The Tools

The Tools: Schur product

Definition (Schur product)

Schur product of vectors: a ? b def
= (a1b1, . . . , anbn).

Schur product of codes:

A ? B def
= SpanFq

{a ? b | a ∈ A, b ∈ B} .

Notation: C ?2 def
= C ? C .

The Tools: Schur product

Definition (Schur product)

Schur product of vectors: a ? b def
= (a1b1, . . . , anbn).

Schur product of codes:

A ? B def
= SpanFq

{a ? b | a ∈ A, b ∈ B} .

Notation: C ?2 def
= C ? C .

The Tools: Schur product

Definition (Schur product)

Schur product of vectors: a ? b def
= (a1b1, . . . , anbn).

Schur product of codes:

A ? B def
= SpanFq

{a ? b | a ∈ A, b ∈ B} .

Notation: C ?2 def
= C ? C .

The Tools: Square-code Distinguisher

Question

Given a code C of dimension k , what is the value of dimC ?2?

Square-code Distinguisher

C random ⇒ dimC ?2 =
(k+1

2

)
= k(k+1)

2 .

C = GRSk(x , y) ⇒ dimC ?2 = 2k − 1.

The Tools: Square-code Distinguisher

Question

Given a code C of dimension k , what is the value of dimC ?2?

Square-code Distinguisher

C random ⇒ dimC ?2 =
(k+1

2

)
= k(k+1)

2 .

C = GRSk(x , y) ⇒ dimC ?2 = 2k − 1.

The Tools: Square-code Distinguisher

Question

Given a code C of dimension k , what is the value of dimC ?2?

Square-code Distinguisher

C random ⇒ dimC ?2 =
(k+1

2

)
= k(k+1)

2 .

C = GRSk(x , y) ⇒ dimC ?2 = 2k − 1.

The Tools: Square-code Distinguisher

Proof.
Let c and c ′ ∈ GRSk(x , y).

c = (y1p(x1), . . . , ynp(xn)), c ′ = (y1q(x1), . . . , ynq(xn))

where p and q are two polynomials of degree at most k − 1.

c ? c ′ = y2
1p(x1)q(x1), . . . , y

2
np(xn)q(xn)

= y2
1 r(x1), . . . , y

2
n r(xn).

where r is a polynomial of degree at most 2k − 2.

Hence,
(GRSk(x , y))?2 = GRS2k−1(x , y ? y).

The Tools: Square-code Distinguisher

Proof.
Let c and c ′ ∈ GRSk(x , y).

c = (y1p(x1), . . . , ynp(xn)), c ′ = (y1q(x1), . . . , ynq(xn))

where p and q are two polynomials of degree at most k − 1.

c ? c ′ = y2
1p(x1)q(x1), . . . , y

2
np(xn)q(xn)

= y2
1 r(x1), . . . , y

2
n r(xn).

where r is a polynomial of degree at most 2k − 2.

Hence,
(GRSk(x , y))?2 = GRS2k−1(x , y ? y).

The Tools: Square-code Distinguisher

Proof.
Let c and c ′ ∈ GRSk(x , y).

c = (y1p(x1), . . . , ynp(xn)), c ′ = (y1q(x1), . . . , ynq(xn))

where p and q are two polynomials of degree at most k − 1.

c ? c ′ = y2
1p(x1)q(x1), . . . , y

2
np(xn)q(xn)

= y2
1 r(x1), . . . , y

2
n r(xn).

where r is a polynomial of degree at most 2k − 2.

Hence,
(GRSk(x , y))?2 = GRS2k−1(x , y ? y).

The Tools: Square-code Distinguisher

Square-code Distinguisher
C a code of length n and dimension k .

C random ⇒ dimC ?2 = k(k+1)
2 .

C = GRSk(x , y) ⇒ dimC ?2 = 2k − 1.

Distinguisher works if:

{
dimC ?2 < k(k+1)

2 ,

dimC ?2 < n.

The Tools: Square-code Distinguisher

Square-code Distinguisher
C a code of length n and dimension k . DIMENSION 6 LENGTH.

C random ⇒ dimC ?2 = min
(
k(k+1)

2 , n
)
.

C = GRSk(x , y) ⇒ dimC ?2 = min (2k − 1, n) .

Distinguisher works if:

{
dimC ?2 < k(k+1)

2 ,

dimC ?2 < n.

The Tools: Square-code Distinguisher

Square-code Distinguisher
C a code of length n and dimension k . DIMENSION 6 LENGTH.

C random ⇒ dimC ?2 = min
(
k(k+1)

2 , n
)
.

C = GRSk(x , y) ⇒ dimC ?2 = min (2k − 1, n) .

Distinguisher works if:

{
dimC ?2 < k(k+1)

2 ,

dimC ?2 < n.

The Tools: Square-code Distinguisher

How to reach the parameter range where the distinguisher works?

The Tools: Square-code Distinguisher

How to reach the parameter range where the distinguisher works?

The Tools: Square-code Distinguisher

How to reach the parameter range where the distinguisher works?

The Tools: Square-code Distinguisher

How to reach the parameter range where the distinguisher works?

The Tools: Punctured and Shortened Codes

Definition (punctured code)
Let C ⊆ Fn

q and j ∈ J1, nK.

P{j} (C)
def
= {(ci)i∈J1,nK,i 6=j s.t. c ∈ C }.

Definition (shortened code)
Let C ⊆ Fn

q and j ∈ J1, nK.

S{j} (C)
def
= P{j} ({c ∈ C s.t. cj = 0}) .

The Tools: Punctured and Shortened Codes

Definition (punctured code)
Let C ⊆ Fn

q and j ∈ J1, nK.

P{j} (C)
def
= {(ci)i∈J1,nK,i 6=j s.t. c ∈ C }.

Definition (shortened code)
Let C ⊆ Fn

q and j ∈ J1, nK.

S{j} (C)
def
= P{j} ({c ∈ C s.t. cj = 0}) .

The Tools: Punctured and Shortened Codes

For C a random code of dimension k and length n:

C random C ′ = S (C)

length = n −→ length n′ = n − 1
dimension = k dimension k ′ = k − 1

dimC ?2 = min
(
k(k+1)

2 , n
)
.

Repeat until dimC ?2 < n.

The Tools: Punctured and Shortened Codes

For C = GRSk(x , y):

C C ′ = S (C)

length = n −→ length n′ = n − 1
dimension = k dimension k ′ = k − 1

dimC ?2 = min (2k − 1, n) .

Repeat until dimC ?2 < n.

The Tools: Punctured and Shortened Codes

For C = GRSk(x , y):

C C ′ = S (C)

length = n −→ length n′ = n − 1
dimension = k dimension k ′ = k − 1

dimC ?2 = min (2k − 1, n) .

Repeat until dimC ?2 < n.

A Distinguisher on RLCE

The Scheme
n w

G 0|R = GRS Random

G 1 = GRS

G 2 = GRS

G =

G 0 ← GRS(n, k)

R ← Fk×w
q

G 1
def
= mix(G 0,R)

Ai ← F2×2
q

A def
=


I n−w (0)

A1

. . .
(0) Aw


G 2

def
= G 1A

P ← Sn+w

G def
= G 2P

Attacker’s point of view:
Given G :

- which column is blabla ? → GRS

- which column is blabla ? → PR

RLCE-short vs. RLCE-long:
Depends on the size of w .

- RLCE-short: w ≈ n−k
2 ;

- RLCE-long: w = n − k .

Purpose of this talk :
Understand why we manage to break RLCE-
short but not RLCE-long.

The Attack

+ = ?

The Attack

GRS + = ?

Lemma : GRS+Rand

A
def
= GRS Rand

subcode of length n
blabla of a GRS code

of dimension kGRS

blabla random code of length r

Lemma

dimA ?2 6 2kGRS + r − 1.

If the equality holds, then for every i ∈ Jn + 1, n + wK:

dimP{i}
(
A ?2) = dimA ?2 − 1.

Lemma : GRS+Rand

A
def
= GRS Rand

subcode of length n
blabla of a GRS code

of dimension kGRS

blabla random code of length r

Lemma

dimA ?2 6 2kGRS + r − 1.

If the equality holds, then for every i ∈ Jn + 1, n + wK:

dimP{i}
(
A ?2) = dimA ?2 − 1.

Lemma : GRS+Rand

A
def
= GRS Rand

subcode of length n
blabla of a GRS code

of dimension kGRS

blabla random code of length r

Lemma

dimA ?2 6 2kGRS + r − 1.

If the equality holds, then for every i ∈ Jn + 1, n + wK:

dimP{i}
(
A ?2) = dimA ?2 − 1.

Lemma : GRS+Rand (Proof)

AGRS
def
= GRS 0 ARand

def
= 0 Rand

A ⊆ AGRS + ARand

A ?2 ⊆ (AGRS + ARand)
?2

⊆ A ?2
GRS + A ?2

Rand + AGRS ?ARand

⊆ A ?2
GRS + A ?2

Rand

dimA ?2 6 dimA ?2
GRS + dimA ?2

Rand

6 2kGRS − 1+ r

Lemma : GRS+Rand (Proof)

AGRS
def
= GRS 0 ARand

def
= 0 Rand

A ⊆ AGRS + ARand

A ?2 ⊆ (AGRS + ARand)
?2

⊆ A ?2
GRS + A ?2

Rand + AGRS ?ARand

⊆ A ?2
GRS + A ?2

Rand

dimA ?2 6 dimA ?2
GRS + dimA ?2

Rand

6 2kGRS − 1+ r

Lemma : GRS+Rand (Proof)

AGRS
def
= GRS 0 ARand

def
= 0 Rand

A ⊆ AGRS + ARand

A ?2 ⊆ (AGRS + ARand)
?2

⊆ A ?2
GRS + A ?2

Rand + AGRS ?ARand

⊆ A ?2
GRS + A ?2

Rand

dimA ?2 6 dimA ?2
GRS + dimA ?2

Rand

6 2kGRS − 1+ r

Lemma : GRS+Rand (Proof)

AGRS
def
= GRS 0 ARand

def
= 0 Rand

A ⊆ AGRS + ARand

A ?2 ⊆ (AGRS + ARand)
?2

⊆ A ?2
GRS + A ?2

Rand + AGRS ?ARand

⊆ A ?2
GRS + A ?2

Rand

dimA ?2 6 dimA ?2
GRS + dimA ?2

Rand

6 2kGRS − 1+ r

Lemma : GRS+Rand

A
def
= GRS Rand

subcode of length n
blabla of a GRS code

of dimension kGRS

blabla random code of length r

Lemma

dimA ?2 6 2kGRS + r − 1.

If the equality holds, then for every i ∈ Jn + 1, n + wK:

dimP{i}
(
A ?2) = dimA ?2 − 1.

Shortening RLCE

C
def
= GRS

1× .

Theorem

dimC ?2 = min (2(k + w)− 1 , n + w).

Independently of the shortened positions!

Shortening RLCE

C
def
= GRS

1× .

Theorem

dimC ?2 = min (2(k + w)− 1 , n + w).

Independently of the shortened positions!

Shortening RLCE

C ′
def
= GRS + 1× .

Theorem

dimC ′
?2

= min (2(k + w − 1)− 1 , n + w − 1).

Independently of the shortened positions!

Proof

• Case 1: +
k + w

↓
(k − 1) + w

• Case 2: + =

Proof

• Case 1: +

k + w

↓
(k − 1) + w

• Case 2: + =

Proof

• Case 1: +
k + w

↓
(k − 1) + w

• Case 2: + =

Proof

• Case 1: +
k + w

↓
(k − 1) + w

• Case 2: +

=

Proof

• Case 1: +
k + w

↓
(k − 1) + w

• Case 2: +

=

Proof

• Case 1: +
k + w

↓
(k − 1) + w

• Case 2: + =

Proof

• Case 1: +
k + w

↓
(k − 1) + w

• Case 2: + = Why?

Derandomization Lemma

Lemma

GRS

↓ shortening one PR column ↓

GRS

Derandomization Lemma

Proof.
By construction, there is

- a polynomial f ∈ Fq[x]<k (the GRS part) ;

- a linear form ψ (the random part) ;

- elements a, b, c , d ∈ Fq (the mixing)

such that, at position i , for any c ∈ C , we have

ci = a · yj f (xj) + c · ψ(f),

cτ(i) = b · yj f (xj) + d · ψ(f).

Shortening in i ⇔ f ∈ Fq[x]<k s.t. ci = 0.

i.e. ψ(f) = −c−1ayj f (xj).

Therefore, for any c ∈ S{i} (C), we have

cτ(i) = (b − dac−1)yj f (xj).

Derandomization Lemma

Proof.

ci = a · yj f (xj) + c · ψ(f),

cτ(i) = b · yj f (xj) + d · ψ(f).

Shortening in i ⇔ f ∈ Fq[x]<k s.t. ci = 0.

i.e. ψ(f) = −c−1ayj f (xj).

Therefore, for any c ∈ S{i} (C), we have

cτ(i) = (b − dac−1)yj f (xj).

Derandomization Lemma

Proof.

ci = a · yj f (xj) + c · ψ(f),

cτ(i) = b · yj f (xj) + d · ψ(f).

Shortening in i ⇔ f ∈ Fq[x]<k s.t. ci = 0.

i.e. ψ(f) = −c−1ayj f (xj).

Therefore, for any c ∈ S{i} (C), we have

cτ(i) = (b − dac−1)yj f (xj).

Derandomization Lemma

Proof.

ci = a · yj f (xj) + c · ψ(f),

cτ(i) = b · yj f (xj) + d · ψ(f).

Shortening in i ⇔ f ∈ Fq[x]<k s.t. ci = 0.

i.e. ψ(f) = −c−1ayj f (xj).

Therefore, for any c ∈ S{i} (C), we have

cτ(i) = (b − dac−1)yj f (xj).

Proof

• Case 1: +
k + w

↓
(k − 1) + w

• Case 2: + = Why?

Proof

• Case 1: +
k + w

↓
(k − 1) + w

• Case 2: + =
k + w

↓
(k + 1) + (w − 2)

Shortening RLCE

C ′
def
= GRS + 1× .

Theorem

dimC ′
?2

= min (2(k + w − 1)− 1 , n + w − 1).

Independently of the shortened positions!

Shortening RLCE

C ′
def
= GRS + `× .

Theorem

dimC ′
?2

= min (2(k + w − `)− 1 , n + w − `).

Independently of the shortened positions!

Shortening RLCE

C ′
def
= GRS + `× .

Theorem

dimC ′
?2

= min (2(k + w − `)− 1 , n + w − `).

Independently of the shortened positions!

Shortening RLCE

C ′
def
= + `× .

Theorem

dimC ′
?2

= min (2(k + w − `)− 1 , n + w − `).

Independently of the shortened positions!

When can we use the distinguisher?

Conditions

dimC ′
?2
<

(
k + 1− `

2

)
,

dimC ′
?2
< n + w − `.

Consequence: works only if

n − k > w +
3+
√
16w + 1
2

= w + O(
√
w),

i.e. works up to values of w that are close to n − k .

Conclusion

The distinguisher works for RLCE-short but not for RLCE-long.

When can we use the distinguisher?

Conditions

min(2(k + w − `)− 1, n + w − `) <
(
k + 1− `

2

)
,

min(2(k + w − `)− 1, n + w − `) < n + w − `.

Consequence: works only if

n − k > w +
3+
√
16w + 1
2

= w + O(
√
w),

i.e. works up to values of w that are close to n − k .

Conclusion

The distinguisher works for RLCE-short but not for RLCE-long.

When can we use the distinguisher?

Conditions

` < k − 3+
√
16w + 1
2

,

w + 2k − n > `.

Consequence: works only if

n − k > w +
3+
√
16w + 1
2

= w + O(
√
w),

i.e. works up to values of w that are close to n − k .

Conclusion

The distinguisher works for RLCE-short but not for RLCE-long.

When can we use the distinguisher?

Conditions

` < k − 3+
√
16w + 1
2

,

w + 2k − n > `.

Consequence: works only if

n − k > w +
3+
√
16w + 1
2

= w + O(
√
w),

i.e. works up to values of w that are close to n − k .

Conclusion

The distinguisher works for RLCE-short but not for RLCE-long.

When can we use the distinguisher?

Conditions

` < k − 3+
√
16w + 1
2

,

w + 2k − n > `.

Consequence: works only if

n − k > w +
3+
√
16w + 1
2

= w + O(
√
w),

i.e. works up to values of w that are close to n − k .

Conclusion

The distinguisher works for RLCE-short but not for RLCE-long.

The Attack

The Attack

+ = ?

Attack Outline

1. Choose the value of `.

2. Shorten on ` positions.
Identify pairs of twin positions.
Repeat.

3. Puncture the twin positions to get a GRS code.
Apply the Sidelnikov Shestakov attack.

4. For each pair of twin positions, recover the mixing matrix.

5. Finish to recover the structure of the GRS code.

Attack Outline

1. Choose the value of `.

2. Shorten on ` positions.
Identify pairs of twin positions.

Repeat.

3. Puncture the twin positions to get a GRS code.
Apply the Sidelnikov Shestakov attack.

4. For each pair of twin positions, recover the mixing matrix.

5. Finish to recover the structure of the GRS code.

Attack Outline

1. Choose the value of `.

2. Shorten on ` positions.
Identify pairs of twin positions.
Repeat.

3. Puncture the twin positions to get a GRS code.
Apply the Sidelnikov Shestakov attack.

4. For each pair of twin positions, recover the mixing matrix.

5. Finish to recover the structure of the GRS code.

Attack Outline

1. Choose the value of `.

2. Shorten on ` positions.
Identify pairs of twin positions.
Repeat.

3. Puncture the twin positions to get a GRS code.
Apply the Sidelnikov Shestakov attack.

4. For each pair of twin positions, recover the mixing matrix.

5. Finish to recover the structure of the GRS code.

Attack Outline

1. Choose the value of `.

2. Shorten on ` positions.
Identify pairs of twin positions.
Repeat.

3. Puncture the twin positions to get a GRS code.
Apply the Sidelnikov Shestakov attack.

4. For each pair of twin positions, recover the mixing matrix.

5. Finish to recover the structure of the GRS code.

Attack Outline

1. Choose the value of `.

2. Shorten on ` positions.
Identify pairs of twin positions.
Repeat.

3. Puncture the twin positions to get a GRS code.
Apply the Sidelnikov Shestakov attack.

4. For each pair of twin positions, recover the mixing matrix.

5. Finish to recover the structure of the GRS code.

Step 1: choose `

Constraint: `min 6 ` < `max, where:

`min = w + 2k − n

`max =

⌈
k − 3+

√
16w + 1
2

− 1
⌉
·

Choice:
`

def
= `max − 1.

Attack Outline

1. Choose the value of `.

2. Shorten on ` positions.
Identify pairs of twin positions.
Repeat.

3. Puncture the twin positions to get a GRS code.
Apply the Sidelnikov Shestakov attack.

4. For each pair of twin positions, recover the mixing matrix.

5. Finish to recover the structure of the GRS code.

Attack Outline

1. Choose the value of `.

2. Shorten on ` positions.
Identify pairs of twin positions.

Repeat.

3. Puncture the twin positions to get a GRS code.
Apply the Sidelnikov Shestakov attack.

4. For each pair of twin positions, recover the mixing matrix.

5. Finish to recover the structure of the GRS code.

Step 2a: identify PR positions

Choose a subset of columns to shorten:

L ⊆ J1, n + wK s.t. |L| = `.

Idea: Check for all positions i ∈ J1, n + wK \ L:

dim (SL (C))?2
?
= dim

(
P{i} (SL (C))

)?2
.

Case 1 i ∈ IGRS ⇒ the dimension does not change ;

Case 2 i ∈ IPR and τ(i) ∈ L: position i is “derandomized” in SL (C)

and behaves like a GRS position ⇒ see Case 1 ;

Case 3 i ∈ IPR and τ(i) 6∈ L: the column behaves like a random one
⇒ puncturing reduces the dimension.

This gives TL
def
= IPR ∩ (J1, n + wK \ L) .

Step 2a: identify PR positions

Choose a subset of columns to shorten:

L ⊆ J1, n + wK s.t. |L| = `.

Idea: Check for all positions i ∈ J1, n + wK \ L:

dim (SL (C))?2
?
= dim

(
P{i} (SL (C))

)?2
.

Case 1 i ∈ IGRS ⇒ the dimension does not change ;

Case 2 i ∈ IPR and τ(i) ∈ L: position i is “derandomized” in SL (C)

and behaves like a GRS position ⇒ see Case 1 ;

Case 3 i ∈ IPR and τ(i) 6∈ L: the column behaves like a random one
⇒ puncturing reduces the dimension.

This gives TL
def
= IPR ∩ (J1, n + wK \ L) .

Step 2a: identify PR positions

Choose a subset of columns to shorten:

L ⊆ J1, n + wK s.t. |L| = `.

Idea: Check for all positions i ∈ J1, n + wK \ L:

dim (SL (C))?2
?
= dim

(
P{i} (SL (C))

)?2
.

Case 1 i ∈ IGRS ⇒ the dimension does not change ;

Case 2 i ∈ IPR and τ(i) ∈ L: position i is “derandomized” in SL (C)

and behaves like a GRS position ⇒ see Case 1 ;

Case 3 i ∈ IPR and τ(i) 6∈ L: the column behaves like a random one
⇒ puncturing reduces the dimension.

This gives TL
def
= IPR ∩ (J1, n + wK \ L) .

Step 2a: identify PR positions

Choose a subset of columns to shorten:

L ⊆ J1, n + wK s.t. |L| = `.

Idea: Check for all positions i ∈ J1, n + wK \ L:

dim (SL (C))?2
?
= dim

(
P{i} (SL (C))

)?2
.

Case 1 i ∈ IGRS ⇒ the dimension does not change ;

Case 2 i ∈ IPR and τ(i) ∈ L: position i is “derandomized” in SL (C)

and behaves like a GRS position ⇒ see Case 1 ;

Case 3 i ∈ IPR and τ(i) 6∈ L: the column behaves like a random one
⇒ puncturing reduces the dimension.

This gives TL
def
= IPR ∩ (J1, n + wK \ L) .

Step 2a: identify PR positions

Choose a subset of columns to shorten:

L ⊆ J1, n + wK s.t. |L| = `.

Idea: Check for all positions i ∈ J1, n + wK \ L:

dim (SL (C))?2
?
= dim

(
P{i} (SL (C))

)?2
.

Case 1 i ∈ IGRS ⇒ the dimension does not change ;

Case 2 i ∈ IPR and τ(i) ∈ L: position i is “derandomized” in SL (C)

and behaves like a GRS position ⇒ see Case 1 ;

Case 3 i ∈ IPR and τ(i) 6∈ L: the column behaves like a random one
⇒ puncturing reduces the dimension.

This gives TL
def
= IPR ∩ (J1, n + wK \ L) .

Step 2a: identify PR positions

Choose a subset of columns to shorten:

L ⊆ J1, n + wK s.t. |L| = `.

Idea: Check for all positions i ∈ J1, n + wK \ L:

dim (SL (C))?2
?
= dim

(
P{i} (SL (C))

)?2
.

Case 1 i ∈ IGRS ⇒ the dimension does not change ;

Case 2 i ∈ IPR and τ(i) ∈ L: position i is “derandomized” in SL (C)

and behaves like a GRS position ⇒ see Case 1 ;

Case 3 i ∈ IPR and τ(i) 6∈ L: the column behaves like a random one
⇒ puncturing reduces the dimension.

This gives TL
def
= IPR ∩ (J1, n + wK \ L) .

Step 2b: match twin positions

For i ∈ TL, how to identify τ(i) ?

Idea: Check for all positions j ∈ TL \ {i}:

dim
(
SL∪{i} (C)

)?2 ?
= dim

(
P{j}

(
SL∪{i} (C)

))?2
.

Case 1 j = τ(i) : position j is “derandomized” in SL∪{i} (C) and
behaves like a GRS position
⇒ the dimension does not change ;

Case 2 j 6= τ(i) : the column behaves like a random one
⇒ puncturing reduces the dimension.

Repeat Step 2 with random choices of L
until you identify all twin positions.

Step 2b: match twin positions

For i ∈ TL, how to identify τ(i) ?

Idea: Check for all positions j ∈ TL \ {i}:

dim
(
SL∪{i} (C)

)?2 ?
= dim

(
P{j}

(
SL∪{i} (C)

))?2
.

Case 1 j = τ(i) : position j is “derandomized” in SL∪{i} (C) and
behaves like a GRS position
⇒ the dimension does not change ;

Case 2 j 6= τ(i) : the column behaves like a random one
⇒ puncturing reduces the dimension.

Repeat Step 2 with random choices of L
until you identify all twin positions.

Step 2b: match twin positions

For i ∈ TL, how to identify τ(i) ?

Idea: Check for all positions j ∈ TL \ {i}:

dim
(
SL∪{i} (C)

)?2 ?
= dim

(
P{j}

(
SL∪{i} (C)

))?2
.

Case 1 j = τ(i) : position j is “derandomized” in SL∪{i} (C) and
behaves like a GRS position
⇒ the dimension does not change ;

Case 2 j 6= τ(i) : the column behaves like a random one
⇒ puncturing reduces the dimension.

Repeat Step 2 with random choices of L
until you identify all twin positions.

Step 2b: match twin positions

For i ∈ TL, how to identify τ(i) ?

Idea: Check for all positions j ∈ TL \ {i}:

dim
(
SL∪{i} (C)

)?2 ?
= dim

(
P{j}

(
SL∪{i} (C)

))?2
.

Case 1 j = τ(i) : position j is “derandomized” in SL∪{i} (C) and
behaves like a GRS position
⇒ the dimension does not change ;

Case 2 j 6= τ(i) : the column behaves like a random one
⇒ puncturing reduces the dimension.

Repeat Step 2 with random choices of L
until you identify all twin positions.

Step 2b: match twin positions

For i ∈ TL, how to identify τ(i) ?

Idea: Check for all positions j ∈ TL \ {i}:

dim
(
SL∪{i} (C)

)?2 ?
= dim

(
P{j}

(
SL∪{i} (C)

))?2
.

Case 1 j = τ(i) : position j is “derandomized” in SL∪{i} (C) and
behaves like a GRS position
⇒ the dimension does not change ;

Case 2 j 6= τ(i) : the column behaves like a random one
⇒ puncturing reduces the dimension.

Repeat Step 2 with random choices of L
until you identify all twin positions.

Attack Outline

1. Choose the value of `.

2. Shorten on ` positions.
Identify pairs of twin positions.
Repeat.

3. Puncture the twin positions to get a GRS code.
Apply the Sidelnikov Shestakov attack.

4. For each pair of twin positions, recover the mixing matrix.

5. Finish to recover the structure of the GRS code.

Attack Outline

1. Choose the value of `.

2. Shorten on ` positions.
Identify pairs of twin positions.
Repeat.

3. Puncture the twin positions to get a GRS code.
Apply the Sidelnikov Shestakov attack.

4. For each pair of twin positions, recover the mixing matrix.

5. Finish to recover the structure of the GRS code.

Attack Outline

1. Choose the value of `.

2. Shorten on ` positions.
Identify pairs of twin positions.
Repeat.

3. Puncture the twin positions to get a GRS code.
Apply the Sidelnikov Shestakov attack.

4. For each pair of twin positions, recover the mixing matrix.

5. Finish to recover the structure of the GRS code.

Step 4: recover the mixing matrix

For {i , τ(i)} a pair of twin positions,
how to recover the GRS and the random column ?

C (i) def
= GRS

?−→ GRS

Idea: Use derandomization!

Step 4: recover the mixing matrix

For {i , τ(i)} a pair of twin positions,
how to recover the GRS and the random column ?

C (i) def
= GRS

?−→ GRS

Idea: Use derandomization!

Step 4: recover the mixing matrix

For {i , τ(i)} a pair of twin positions,
how to recover the GRS and the random column ?

C (i) def
= GRS

?−→ GRS

Idea: Use derandomization!

Step 4: recover the mixing matrix (2)

By construction, there is

- a polynomial f ∈ Fq[x]<k (the GRS part) ;
- a linear form ψ (the random part) ;
- elements a, b, c , d ∈ Fq (the mixing)

such that, at position i , for any c ∈ C (i), we have

ci = a · yj f (xj) + c · ψ(f),

cτ(i) = b · yj f (xj) + d · ψ(f).

Shortening in i ⇔ f ∈ Fq[x]<k s.t. ci = 0.

Therefore, for any c ∈ S{i}
(
C (i)

)
, we have

cτ(i) = (b − ac−1)f (xj).

Step 4: recover the mixing matrix (2)

By construction, there is

- a polynomial f ∈ Fq[x]<k (the GRS part) ;
- a linear form ψ (the random part) ;
- elements a, b, c , d ∈ Fq (the mixing)

such that, at position i , for any c ∈ C (i), we have

ci = a · f (xj) + c · ψ(f),

cτ(i) = b · f (xj) + ψ(f).

Shortening in i ⇔ f ∈ Fq[x]<k s.t. ci = 0.

Therefore, for any c ∈ S{i}
(
C (i)

)
, we have

cτ(i) = (b − ac−1)f (xj).

Step 4: recover the mixing matrix (2)

By construction, there is

- a polynomial f ∈ Fq[x]<k (the GRS part) ;
- a linear form ψ (the random part) ;
- elements a, b, c , d ∈ Fq (the mixing)

such that, at position i , for any c ∈ C (i), we have

ci = a · f (xj) + c · ψ(f),

cτ(i) = b · f (xj) + ψ(f).

Shortening in i ⇔ f ∈ Fq[x]<k s.t. ci = 0.

Therefore, for any c ∈ S{i}
(
C (i)

)
, we have

cτ(i) = (b − ac−1)f (xj).

Step 4: recover the mixing matrix (2)

By construction, there is

- a polynomial f ∈ Fq[x]<k (the GRS part) ;
- a linear form ψ (the random part) ;
- elements a, b, c , d ∈ Fq (the mixing)

such that, at position i , for any c ∈ C (i), we have

ci = a · f (xj) + c · ψ(f),

cτ(i) = b · f (xj) + ψ(f).

Shortening in i ⇔ f ∈ Fq[x]<k s.t. ci = 0.

Therefore, for any c ∈ S{i}
(
C (i)

)
, we have

cτ(i) = (b − ac−1)f (xj).

Step 4: recover the mixing matrix (3)

cτ(i) = (b − ac−1)f (xj).

- Collect a basis of codewords in S{i}
(
C (i)

)
,

- Find the corresponding f ∈ Fq[x]<k by interpolation on the
known GRS positions,

- Deduce the value of (b − ac−1) and xj .

Still need to find a, b and c.

Bruteforce works (Fq = 210).
Or use another technical trick.

Step 4: recover the mixing matrix (3)

cτ(i) = (b − ac−1)f (xj).

- Collect a basis of codewords in S{i}
(
C (i)

)
,

- Find the corresponding f ∈ Fq[x]<k by interpolation on the
known GRS positions,

- Deduce the value of (b − ac−1) and xj .

Still need to find a, b and c.

Bruteforce works (Fq = 210).
Or use another technical trick.

Step 4: recover the mixing matrix (3)

cτ(i) = (b − ac−1)f (xj).

- Collect a basis of codewords in S{i}
(
C (i)

)
,

- Find the corresponding f ∈ Fq[x]<k by interpolation on the
known GRS positions,

- Deduce the value of (b − ac−1) and xj .

Still need to find a, b and c.

Bruteforce works (Fq = 210).
Or use another technical trick.

Step 4: recover the mixing matrix (3)

cτ(i) = (b − ac−1)f (xj).

- Collect a basis of codewords in S{i}
(
C (i)

)
,

- Find the corresponding f ∈ Fq[x]<k by interpolation on the
known GRS positions,

- Deduce the value of (b − ac−1) and xj .

Still need to find a, b and c.

Bruteforce works (Fq = 210).
Or use another technical trick.

Attack Outline

1. Choose the value of `.

2. Shorten on ` positions.
Identify pairs of twin positions.
Repeat.

3. Puncture the twin positions to get a GRS code.
Apply the Sidelnikov Shestakov attack.

4. For each pair of twin positions, recover the mixing matrix.

5. Finish to recover the structure of the GRS code.

Attack Outline

1. Choose the value of `.

2. Shorten on ` positions.
Identify pairs of twin positions.
Repeat.

3. Puncture the twin positions to get a GRS code.
Apply the Sidelnikov Shestakov attack.

4. For each pair of twin positions, recover the mixing matrix.

5. Finish to recover the structure of the GRS code.

Conclusion

Conclusion

- Recovered the GRS structure of RLCE-short.

- Complexity in O(wn2k2) operations in Fq.

- Parameters of RLCE-long remain out of reach.

https://arxiv.org/abs/1805.11489

Thank you for your attention!

https://arxiv.org/abs/1805.11489

Conclusion

- Recovered the GRS structure of RLCE-short.

- Complexity in O(wn2k2) operations in Fq.

- Parameters of RLCE-long remain out of reach.

https://arxiv.org/abs/1805.11489

Thank you for your attention!

https://arxiv.org/abs/1805.11489

Conclusion

- Recovered the GRS structure of RLCE-short.

- Complexity in O(wn2k2) operations in Fq.

- Parameters of RLCE-long remain out of reach.

https://arxiv.org/abs/1805.11489

Thank you for your attention!

https://arxiv.org/abs/1805.11489

Conclusion

- Recovered the GRS structure of RLCE-short.

- Complexity in O(wn2k2) operations in Fq.

- Parameters of RLCE-long remain out of reach.

https://arxiv.org/abs/1805.11489

Thank you for your attention!

https://arxiv.org/abs/1805.11489

Conclusion

- Recovered the GRS structure of RLCE-short.

- Complexity in O(wn2k2) operations in Fq.

- Parameters of RLCE-long remain out of reach.

https://arxiv.org/abs/1805.11489

Thank you for your attention!

https://arxiv.org/abs/1805.11489

	Context
	The RLCE Scheme
	The Tools
	A Distinguisher on RLCE
	The Attack
	Conclusion

