CRYPTANALYSIS OF GRS-BASED CRYPTOSYSTEMS USING THE SQUARE-CODE DISTINGUISHER

APPLICATION TO THE XGRS SCHEME

ALAIN COUVREUR¹ AND MATTHIEU LEQUESNE²

¹ LIX, ÉCOLE POLYTECHNIQUE INRIA SACLAY, TEAM GRACE

² SORBONNE UNIVERSITÉ INRIA PARIS, TEAM COSMIQ

SÉMINAIRE DE CRYPTOGRAPHIE DE RENNES, FEBRUARY 7, 2020

ALL YOU EVER WANTED TO KNOW ABOUT CODE-BASED CRYPTO

POST-QUANTUM CRYPTOGRAPHY

POST-QUANTUM CRYPTOGRAPHY

1978, Robert McEliece: [McE78]

A Public-Key Cryptosystem Based On Algebraic Coding Theory

R. J. McElliece Communications Systems Research Section

Using the fact that a fast decoding algorithm exists for a general Goppa code, while no such exists for a general linear code, we construct a public key cryptosystem which appear quite secture while at the ame time allowing extremely rapid also artee. This kind of cryptosystem is ideal for use in multi-user communication networks, such as those envisioned by NASA for the distribution of storce-captured data

Definition (Code)

An $[n,k]_{\mathbb{F}_q}$ linear **code** $\mathscr C$ is a linear subspace of \mathbb{F}_q^n of dimension k.

Definition (Decoder)

A **decoder** for the code \mathscr{C} is a function

$$\Phi_{\mathscr{C}}: \mathbb{F}_q^n \to \mathscr{C} \cup \{?\}.$$

We say that $\Phi_{\mathscr{C}}$ can decode up to t errors if

$$\forall c \in \mathscr{C}, \forall e \in \mathbb{F}_q^n, \qquad |e| \leq t \quad \Rightarrow \quad \Phi_{\mathscr{C}}(c+e) = c.$$

Definition (Generator matrix)

A **generator matrix** of a code \mathscr{C} is a matrix $\mathbf{G} \in \mathbb{F}_a^{k \times n}$ such that:

$$\mathscr{C} = \{ x \mathbf{G} \, | \, x \in \mathbb{F}_q^k \}.$$

Definition (Parity-check matrix)

A **parity-check matrix** of a code $\mathscr C$ is a matrix $\mathbf H \in \mathbb F_q^{(n-k)\times n}$ such that:

$$\mathscr{C} = \{ y \in \mathbb{F}_q^n \, | \, \mathbf{H} y^\mathsf{T} = \mathsf{O} \}.$$

Example (Repetition Code)

$$\begin{array}{cccc} \mathbb{F}_2 & \rightarrow & \mathbb{F}_2^3 \\ o & \mapsto & \text{(o,o,o)} \\ 1 & \mapsto & \text{(1,1,1)} \end{array}$$

Example (Decoder)

```
if |x| <= 1:
    return 0
else:
    return 1</pre>
```

Example (Repetition Code)

$$\begin{array}{cccc} \mathbb{F}_2 & \rightarrow & \mathbb{F}_2^3 \\ \text{O} & \mapsto & \text{(0,0,0)} \\ \text{1} & \mapsto & \text{(1,1,1)} \end{array}$$

$$G = \begin{pmatrix} 1 & 1 & 1 \end{pmatrix}$$

Example (Decoder)

$$H = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix}$$

Main idea: how hard is it to decode up to t errors?

Main idea: how hard is it to decode up to t errors?

For a random code

Main idea: how hard is it to decode up to t errors?

■ For a random code

 $\xrightarrow{\mathsf{medium}} \quad \xrightarrow{\mathsf{hard}} \quad t$

For some special families of structured codes

Main idea: how hard is it to decode up to t errors?

■ For some special families of structured codes easy hard

easy = in polynomial time (with trap)
medium / hard = requires exponential time

Main idea: how hard is it to decode up to t errors?

For a random code

medium hard easy hard

CRYPTO

For some special families of structured codes

easy = in polynomial time (with trap)

medium / hard = requires exponential time

Ingredients:

 \blacksquare a family \mathcal{F} of structured codes;

Ingredients:

- \blacksquare a family \mathcal{F} of structured codes;
- \blacksquare a decoder $\Phi_{\mathcal{F}}$ that can correct efficiently up to t errors;

Ingredients:

- \blacksquare a family \mathcal{F} of structured codes;
- lacktriangle a decoder $\Phi_{\mathcal{F}}$ that can correct efficiently up to t errors;

Ingredients:

- \blacksquare a family \mathcal{F} of structured codes;
- \blacksquare a decoder $\Phi_{\mathcal{F}}$ that can correct efficiently up to t errors;

a shaker!

Recipe:

KeyGen()

$$\begin{aligned} & \textbf{\textit{G}}_{sk} \overset{\$}{\leftarrow} \mathcal{F} \\ & \textbf{\textit{G}}_{pk} \leftarrow \mathrm{Shake}(\textbf{\textit{G}}_{sk}) \end{aligned}$$

Enc(m)

$$e \stackrel{\$}{\leftarrow} \mathbb{F}_q^n$$
, s.t. $|e| = t$
 $c \leftarrow m\mathbf{G}_{\mathsf{pk}} + e$

Dec(c)

$$\textit{m} \leftarrow \Phi_{\mathcal{F}}(\textit{\textbf{G}}_{sk},\textit{c})$$

Ingredients:

- \blacksquare a family \mathcal{F} of structured codes;
- \blacksquare a decoder $\Phi_{\mathcal{F}}$ that can correct efficiently up to t errors;

a shaker!

Recipe:

KeyGen()

$$oldsymbol{G}_{sk} \stackrel{\$}{\leftarrow} \mathcal{F} \ oldsymbol{G}_{pk} \leftarrow \operatorname{Shake}(oldsymbol{G}_{sk})$$

Enc(m)

$$e \stackrel{\$}{\leftarrow} \mathbb{F}_q^n$$
, s.t. $|e| = t$
 $c \leftarrow m\mathbf{G}_{pk} + e$

Dec(c)

$$m \leftarrow \Phi_{\mathcal{F}}(\textbf{\textit{G}}_{sk}, c)$$

The key to success:

choose t s.t. it is hard to decode t errors for a random code;

Ingredients:

- \blacksquare a family \mathcal{F} of structured codes;
- lacktriangle a decoder $\Phi_{\mathcal{F}}$ that can correct efficiently up to t errors;

a shaker!

Recipe:

KeyGen()

$$\begin{aligned} \textbf{\textit{G}}_{sk} &\overset{\$}{\leftarrow} \mathcal{F} \\ \textbf{\textit{G}}_{pk} &\leftarrow \mathrm{Shake}(\textbf{\textit{G}}_{sk}) \end{aligned}$$

Enc(m)

$$e \stackrel{\$}{\leftarrow} \mathbb{F}_q^n$$
, s.t. $|e| = t$
 $c \leftarrow m\mathbf{G}_{\mathsf{pk}} + e$

Dec(c)

$$\textit{m} \leftarrow \Phi_{\mathcal{F}}(\textit{\textbf{G}}_{sk},\textit{c})$$

The key to success:

- choose t s.t. it is hard to decode t errors for a random code;
- lacktriangle $\Phi_{\mathcal{F}}$ needs the structured version of the code to be efficient;

Ingredients:

- \blacksquare a family \mathcal{F} of structured codes;
- \blacksquare a decoder $\Phi_{\mathcal{F}}$ that can correct efficiently up to t errors;

a shaker!

Recipe:

KeyGen()

$$\begin{aligned} & \textbf{\textit{G}}_{sk} \overset{\$}{\leftarrow} \mathcal{F} \\ & \textbf{\textit{G}}_{pk} \leftarrow \mathrm{Shake}(\textbf{\textit{G}}_{sk}) \end{aligned}$$

Enc(m)

$$e \stackrel{\$}{\leftarrow} \mathbb{F}_q^n$$
, s.t. $|e| = t$
 $c \leftarrow m\mathbf{G}_{\mathsf{pk}} + e$

Dec(c)

$$\textit{m} \leftarrow \Phi_{\mathcal{F}}(\textbf{\textit{G}}_{Sk},\textit{c})$$

The key to success:

- choose t s.t. it is hard to decode t errors for a random code;
- lacktriangle $\Phi_{\mathcal{F}}$ needs the structured version of the code to be efficient;
- the shaker shakes well enough!

How could Eve break this scheme? 2 possibilities:

1. Reconstruct ${\textbf G}_{sk}$ from ${\textbf G}_{pk}$ and then use $\Phi_{\mathcal F}$ to decode.

How could Eve break this scheme? 2 possibilities:

1. Reconstruct ${\textbf G}_{sk}$ from ${\textbf G}_{pk}$ and then use $\Phi_{\mathcal F}$ to decode.

Security hypothesis 1

 \mathbf{G}_{pk} is indistinguishable from a random $k \times n$ matrix.

How could Eve break this scheme? 2 possibilities:

1. Reconstruct $\textbf{\textit{G}}_{sk}$ from $\textbf{\textit{G}}_{pk}$ and then use $\Phi_{\mathcal{F}}$ to decode.

Security hypothesis 1

 \mathbf{G}_{pk} is indistinguishable from a random $k \times n$ matrix.

2. Decode using G_{pk} .

How could Eve break this scheme? 2 possibilities:

1. Reconstruct \boldsymbol{G}_{sk} from \boldsymbol{G}_{pk} and then use $\Phi_{\mathcal{F}}$ to decode.

Security hypothesis 1

 \mathbf{G}_{pk} is indistinguishable from a random $k \times n$ matrix.

2. Decode using G_{pk} .

Security hypothesis 2

Decoding t errors in a random [n, k]-code is hard.

How could Eve break this scheme? 2 possibilities:

1. Reconstruct ${\textbf G}_{sk}$ from ${\textbf G}_{pk}$ and then use $\Phi_{\mathcal F}$ to decode.

Security hypothesis 1

 \mathbf{G}_{pk} is indistinguishable from a random $k \times n$ matrix.

2. Decode using G_{pk} .

Security hypothesis 2

Decoding t errors in a random [n, k]-code is hard.

Remark: Hypothesis 1 depends on the choice of the family of codes \mathcal{F} and the shaker, while Hypothesis 2 is generic!

SOME EXAMPLES

- **Examples** of choices of \mathcal{F} :
 - Goppa codes [Original McEliece];
 - QC-MDPC codes [BIKE];
 - Rank-based codes [ROLLO];
 - Generalised Reed Solomon codes (GRS).

SOME EXAMPLES

- Examples of choices of F:
 - ► Goppa codes [Original McEliece];
 - QC-MDPC codes [BIKE];
 - Rank-based codes [ROLLO];
 - ► Generalised Reed Solomon codes (GRS).

- Examples of shakers:
 - row scrambler;
 - columns isometry (permutation);
 - subfield subcode;
 - adding random columns...

GRS-BASED CRYPTOSYSTEM

▶ Niederreiter's proposal [Nie86],

GRS-BASED CRYPTOSYSTEM

- Niederreiter's proposal [Nie86],
 - attack by Sidelnikov and Shestakov [SS92];

GRS-BASED CRYPTOSYSTEM

- Niederreiter's proposal [Nie86],
 - attack by Sidelnikov and Shestakov [SS92];
- Berger-Loidreau's cryptosystem [BL05],

- Niederreiter's proposal [Nie86],
 - attack by Sidelnikov and Shestakov [SS92];
- Berger-Loidreau's cryptosystem [BLo5],
 - attack by Wieschebrink [Wieo6, Wieo9];

- Niederreiter's proposal [Nie86],
 - attack by Sidelnikov and Shestakov [SS92];
- Berger-Loidreau's cryptosystem [BLo5],
 - attack by Wieschebrink [Wieo6, Wieo9];
- Wang's RLCE cryptosystem [Wan17], submitted to the NIST,

- ▶ Niederreiter's proposal [Nie86],
 - attack by Sidelnikov and Shestakov [SS92];
- Berger-Loidreau's cryptosystem [BLo5],
 - attack by Wieschebrink [Wieo6, Wieo9];
- Wang's RLCE cryptosystem [Wan17], submitted to the NIST,
 - partial attack by Couvreur, L., Tillich [CLT19];

- Niederreiter's proposal [Nie86],
 - attack by Sidelnikov and Shestakov [SS92];
- Berger-Loidreau's cryptosystem [BL05],
 - attack by Wieschebrink [Wieo6, Wieo9];
- Wang's RLCE cryptosystem [Wan17], submitted to the NIST,
 - partial attack by Couvreur, L., Tillich [CLT19];
- New proposal: "Encryption Scheme Based on Expanded Reed-Solomon Codes" by Khathuria, Rosenthal and Weger,

- Niederreiter's proposal [Nie86],
 - attack by Sidelnikov and Shestakov [SS92];
- Berger-Loidreau's cryptosystem [BLo5],
 - attack by Wieschebrink [Wieo6, Wieo9];
- Wang's RLCE cryptosystem [Wan17], submitted to the NIST,
 - partial attack by Couvreur, L., Tillich [CLT19];
- New proposal: "Encryption Scheme Based on Expanded Reed-Solomon Codes" by Khathuria, Rosenthal and Weger,
 - partial attack in this work.

THE XGRS CRYPTOSYSTEM (V1)

GENERALISED REED SOLOMON CODES

Definition (Generalised Reed Solomon codes)

The generalised Reed–Solomon (GRS) code with support \mathbf{x} and multiplier \mathbf{y} of dimension k is defined as

$$\mathsf{GRS}_k(\mathbf{x},\mathbf{y}) \stackrel{\triangle}{=} \left\{ (y_1 f(\mathbf{x}_1), \dots, y_n f(\mathbf{x}_n)) \mid f \in \mathbb{F}_q[\mathbf{x}]_{< k} \right\}.$$

GENERALISED REED SOLOMON CODES

Definition (Generalised Reed Solomon codes)

The generalised Reed–Solomon (GRS) code with support \mathbf{x} and multiplier \mathbf{y} of dimension k is defined as

$$\mathsf{GRS}_k(\mathbf{x},\mathbf{y}) \stackrel{\triangle}{=} \left\{ (y_1 f(\mathbf{x}_1), \dots, y_n f(\mathbf{x}_n)) \mid f \in \mathbb{F}_q[\mathbf{x}]_{< k} \right\}.$$

Sidelnikov Shestakov [SS92]

Given a generator matrix of a GRS code \mathscr{C} , it is possible to find \mathbf{x} and \mathbf{y} such that $\mathscr{C} = \mathbf{GRS}_k(\mathbf{x}, \mathbf{y})$.

The Expansion operator $\mathbf{Exp}_{(\alpha,\beta)}$

Let (α, β) be an \mathbb{F}_q -base of \mathbb{F}_{q^2} . Denote $\phi_{\alpha}(\cdot)$, $\phi_{\beta}(\cdot)$ the projectors.

The Expansion operator $\mathsf{Exp}_{(\alpha,\beta)}$

Let (α, β) be an \mathbb{F}_q -base of \mathbb{F}_{q^2} . Denote $\phi_{\alpha}(\cdot)$, $\phi_{\beta}(\cdot)$ the projectors.

Definition

$\mathsf{Exp}_{({\color{blue}lpha},{\color{blue}eta})}$

$$\begin{pmatrix} m_{1,1} & m_{1,2} & \cdots & m_{1,n} \\ m_{2,1} & m_{2,2} & \cdots & m_{2,n} \\ \vdots & \vdots & & \vdots \\ m_{k,1} & m_{k,2} & \cdots & m_{k,n} \end{pmatrix} \mapsto \begin{pmatrix} \mathbf{M}_{1,1} & \mathbf{M}_{1,2} & \cdots & \mathbf{M}_{1,n} \\ \mathbf{M}_{2,1} & \mathbf{M}_{2,2} & \cdots & \mathbf{M}_{2,n} \\ \vdots & \vdots & & \vdots \\ \mathbf{M}_{k,1} & \mathbf{M}_{k,2} & \cdots & \mathbf{M}_{k,n} \end{pmatrix}$$

were
$$\mathbf{M}_{i,j} \stackrel{\triangle}{=} \begin{pmatrix} \phi_{\alpha}(\alpha m_{i,j}) & \phi_{\alpha}(\beta m_{i,j}) \\ \phi_{\beta}(\alpha m_{i,j}) & \phi_{\beta}(\beta m_{i,j}) \end{pmatrix} \in \mathbb{F}_q^{2 \times 2}$$
.

PROPERTIES OF $\mathbf{Exp}_{(\alpha,\beta)}$

Definition

For
$$\mathbf{x}=(x_1,\ldots,x_n)\in\mathbb{F}_{q^2}^n$$
, denote

$$\phi_{\alpha,\beta}^{(n)}(\mathbf{x}) \stackrel{\triangle}{=} (\phi_{\alpha}(x_1),\phi_{\beta}(x_1),\ldots,\phi_{\alpha}(x_n),\phi_{\beta}(x_n)) \in \mathbb{F}_q^{2n}.$$

Properties of $\mathsf{Exp}_{(\alpha,\beta)}$

Definition

For $\mathbf{x}=(x_1,\ldots,x_n)\in\mathbb{F}_{q^2}^n$, denote

$$\phi_{\alpha,\beta}^{(n)}(\mathbf{x}) \stackrel{\triangle}{=} (\phi_{\alpha}(x_1), \phi_{\beta}(x_1), \dots, \phi_{\alpha}(x_n), \phi_{\beta}(x_n)) \in \mathbb{F}_q^{2n}.$$

Proposition

Let $\mathscr C$ be an [n,k]-code over $\mathbb F_{q^2}$, G a generator matrix and H a parity-check matrix of $\mathscr C$. Then, for any $\mathbb F_q$ -base (α,β) of $\mathbb F_{q^2}$:

- $lack \phi^{(n)}(x\cdot {m G}) = \phi^{(k)}(x)\cdot {m Exp}({m G}) ext{ for all } x\in \mathbb{F}_{q^2}^k;$

where $\overline{\mathbf{Exp}}(M) \stackrel{\triangle}{=} (\mathbf{Exp}(M^{\mathsf{T}}))^{\mathsf{T}}$.

Properties of $\mathsf{Exp}_{(lpha,eta)}$

Let \mathscr{C} be an [n, k]-code over \mathbb{F}_{q^2} . Let \mathscr{C} be the code over \mathbb{F}_q defined by

$$\hat{\mathscr{C}} \stackrel{\triangle}{=} \{ \phi^{(n)}(\mathbf{c}) \, | \, \mathbf{c} \in \mathscr{C} \}.$$

Proposition

- **Exp**(G) is a generator matrix of $\hat{\mathscr{E}}$;
- **Exp**(H) is a parity-check matrix of $\hat{\mathscr{C}}$,

where \boldsymbol{G} is a generator matrix and \boldsymbol{H} a parity-chek matrix of \mathscr{C} .

KEY GENERATION

For parameters (q, n, k):

- $ightharpoonup \gamma$ a primitive element of \mathbb{F}_{q^2} : $(\alpha, \beta) = (1, \gamma)$
- lacksquare $G \overset{\$}{\leftarrow} \mathsf{GRS}_{\mathbb{F}_{q^2}}(n,k) \in \mathbb{F}_{q^2}^{k imes n}$
- $lacktriangledown t = \lfloor rac{k}{2} \rfloor$ (error-correction capacity of $oldsymbol{G}^{\perp}$)
- **S** $\stackrel{\$}{\leftarrow}$ 2 $k \times 2k$ invertible matrix
- $P \stackrel{\$}{\leftarrow} 2n \times 2n$ permutation matrix
- lacksquare $oldsymbol{G}_{\mathsf{pk}} = oldsymbol{S} \cdot (\mathbf{Exp}_{(1,\gamma)} oldsymbol{G}) \cdot oldsymbol{P}$

$$\left\{ \begin{array}{ll} \mathrm{PublicKey} = & (\textbf{\textit{G}}_{pk},t) \\ \mathrm{SecretKey} = & (\gamma,\textbf{\textit{G}},\textbf{\textit{S}},\textbf{\textit{P}}). \end{array} \right.$$

KEY GENERATION

For parameters (q, n, k):

- $ightharpoonup \gamma$ a primitive element of \mathbb{F}_{q^2} : $(\alpha, \beta) = (1, \gamma)$
- lacksquare $G \overset{\$}{\leftarrow} \mathsf{GRS}_{\mathbb{F}_{q^2}}(n,k) \in \mathbb{F}_{q^2}^{k imes n}$
- $lacktriangledown t = \lfloor rac{k}{2} \rfloor$ (error-correction capacity of $oldsymbol{G}^{\perp}$)
- **S** $\stackrel{\$}{\leftarrow}$ 2 $k \times 2k$ invertible matrix
- $P \stackrel{\$}{\leftarrow} 2n \times 2n$ permutation matrix

$$\left\{ \begin{array}{ll} \mathrm{PublicKey} = & (\textbf{\textit{G}}_{pk},t) \\ \mathrm{SecretKey} = & (\gamma,\textbf{\textit{G}},\textbf{\textit{S}},\textbf{\textit{P}}). \end{array} \right.$$

Recall the generic recipe:

KeyGen()

$$\begin{aligned} & \textbf{\textit{G}}_{sk} \xleftarrow{\$} \mathcal{F} \\ & \textbf{\textit{G}}_{pk} \leftarrow \mathrm{Shake}(\textbf{\textit{G}}_{sk}) \end{aligned}$$

Enc(m)

$$e \stackrel{\$}{\leftarrow} \mathbb{F}_q^n$$
, s.t. $|e| = t$
 $c \leftarrow m\mathbf{G}_{\mathsf{pk}} + e$

Dec(c)

$$\textit{m} \leftarrow \Phi_{\mathcal{F}}(\textit{\textbf{G}}_{sk},\textit{c})$$

Recall the generic recipe:

KeyGen()

$$oldsymbol{G}_{\mathsf{sk}} \overset{\$}{\leftarrow} \mathcal{F} \ oldsymbol{G}_{\mathsf{pk}} \leftarrow \mathrm{Shake}(oldsymbol{G}_{\mathsf{sk}})$$

Enc(m)

$$e \overset{\$}{\leftarrow} \mathbb{F}_q^n$$
, s.t. $|e| = t$
 $c \leftarrow m\mathbf{G}_{\mathsf{pk}} + e$

Dec(c)

$$\textit{m} \leftarrow \Phi_{\mathcal{F}}(\textit{\textbf{G}}_{sk},\textit{c})$$

XGRS:

expand matrix

- = + scramble rows
 - + permute columns.

Message space

$$\{\boldsymbol{m}\in\mathbb{F}_q^{2n}, |\boldsymbol{m}|\leq t\}.$$

Message space

$$\{\mathbf{m}\in\mathbb{F}_q^{2n}, |\mathbf{m}|\leq t\}.$$

Encyption

Enc(m, G_{pk}):

- $\ \ \, \boldsymbol{c} = \boldsymbol{G}_{pk}\boldsymbol{m}^{\mathsf{T}}$
- Return c.

Message space

$$\{\mathbf{m}\in\mathbb{F}_a^{2n}, |\mathbf{m}|\leq t\}.$$

Encyption

 $Enc(m, G_{pk})$:

- $\mathbf{c} = \mathbf{G}_{pk} \mathbf{m}^{\mathsf{T}}$
- Return c.

Decryption

 $Dec(c, \gamma, G, S, P)$:

- $\mathbf{c}' = \mathbf{S}^{-1}\mathbf{c}$ $\mathbf{c}' = (\mathbf{Exp}_{(1,\gamma)}\mathbf{G}) \cdot (\mathbf{P} \cdot \mathbf{m}^{\mathsf{T}})$
- $\mathbf{c}'' = \phi_{(\mathbf{1}, \gamma)}^{(-n)}(\mathbf{c}')$ $\mathbf{c}'' = \mathbf{G} \cdot \left(\phi_{(\mathbf{1}, \gamma)}^{(n)}(\mathbf{P} \cdot \mathbf{m}^{\mathsf{T}})\right)^{\mathsf{T}}$
- Find **m**′ (correcting t errors)
- Return $\mathbf{m} = \mathbf{P}^{-1} \cdot \phi_{(1,\gamma)}^{(n)}(\mathbf{m}')$.

PARAMETERS

- \blacksquare q a prime power;
- n, k such that $0 \le k \le n \le q^2$.

q	n	k	key size (Mb)
31	925	232	3.18

Figure: Parameters proposed for the scheme

(Classical McEliece key size = 8.37 Mb)

THE TOOLS: SCHUR PRODUCT

Definition (Schur product)

Schur product of vectors: $\mathbf{a} \star \mathbf{b} \stackrel{\triangle}{=} (a_1 b_1, \dots, a_n b_n).$

THE TOOLS: SCHUR PRODUCT

Definition (Schur product)

Schur product of vectors: $\mathbf{a} \star \mathbf{b} \stackrel{\triangle}{=} (a_1 b_1, \dots, a_n b_n)$. Schur product of codes:

$$\mathcal{A}\star\mathcal{B}\stackrel{\triangle}{=} \text{Span}_{\mathbb{F}_q}\left\{\textbf{a}\star\textbf{b}\mid \textbf{a}\in\mathcal{A},\ \textbf{b}\in\mathcal{B}\right\}.$$

THE TOOLS: SCHUR PRODUCT

Definition (Schur product)

Schur product of vectors: $\mathbf{a} \star \mathbf{b} \stackrel{\triangle}{=} (a_1 b_1, \dots, a_n b_n)$. Schur product of codes:

$$\mathcal{A}\star\mathcal{B}\stackrel{\triangle}{=} \text{Span}_{\mathbb{F}_q}\left\{\mathbf{a}\star\mathbf{b}\mid \mathbf{a}\in\mathcal{A},\; \mathbf{b}\in\mathcal{B}\right\}.$$

Notation: $\mathscr{C}^{\star 2} \stackrel{\triangle}{=} \mathscr{C} \star \mathscr{C}$.

Question

Given a code \mathscr{C} of dimension k, what is the value of dim $\mathscr{C}^{\star 2}$?

Question

Given a code \mathscr{C} of dimension k, what is the value of dim \mathscr{C}^{*2} ?

Square-code Distinguisher

$$\mathscr{C}$$
 random \Rightarrow dim $\mathscr{C}^{\star 2} = \binom{k+1}{2} = \frac{k(k+1)}{2}$.

Question

Given a code \mathscr{C} of dimension k, what is the value of dim \mathscr{C}^{*2} ?

Square-code Distinguisher

$$\mathscr{C}$$
 random \Rightarrow dim $\mathscr{C}^{\star 2} = {k+1 \choose 2} = \frac{k(k+1)}{2}$.

$$\mathscr{C} = \mathsf{GRS}_k(\mathbf{x}, \mathbf{y}) \quad \Rightarrow \quad \dim \mathscr{C}^{\star 2} = 2k - 1.$$

Proof.

Let **c** and $\mathbf{c}' \in \mathbf{GRS}_k(\mathbf{x}, \mathbf{y})$.

$$\mathbf{c} = (y_1 p(x_1), \dots, y_n p(x_n)), \quad \mathbf{c}' = (y_1 q(x_1), \dots, y_n q(x_n))$$

where p and q are two polynomials of degree at most k-1.

Proof.

Let **c** and $\mathbf{c}' \in GRS_k(\mathbf{x}, \mathbf{y})$.

$$\mathbf{c} = (y_1 p(x_1), \dots, y_n p(x_n)), \quad \mathbf{c}' = (y_1 q(x_1), \dots, y_n q(x_n))$$

where p and q are two polynomials of degree at most k-1.

$$\mathbf{c} \star \mathbf{c}' = y_1^2 p(x_1) q(x_1), \dots, y_n^2 p(x_n) q(x_n)$$

= $y_1^2 r(x_1), \dots, y_n^2 r(x_n)$.

where r is a polynomial of degree at most 2k - 2.

Proof.

Let **c** and $\mathbf{c}' \in GRS_k(\mathbf{x}, \mathbf{y})$.

$$\mathbf{c} = (y_1 p(x_1), \dots, y_n p(x_n)), \quad \mathbf{c}' = (y_1 q(x_1), \dots, y_n q(x_n))$$

where p and q are two polynomials of degree at most k-1.

$$\mathbf{c} \star \mathbf{c}' = y_1^2 p(x_1) q(x_1), \dots, y_n^2 p(x_n) q(x_n)$$

= $y_1^2 r(x_1), \dots, y_n^2 r(x_n)$.

where r is a polynomial of degree at most 2k-2. Hence,

$$(\mathsf{GRS}_k(\mathbf{x},\mathbf{y}))^{\star 2} = \mathsf{GRS}_{2k-1}(\mathbf{x},\mathbf{y}\star\mathbf{y}).$$

Square-code Distinguisher

 \mathscr{C} a code of length n and dimension k.

$$\mathscr{C}$$
 random \Rightarrow dim $\mathscr{C}^{\star 2} = \frac{k(k+1)}{2}$.

$$\mathscr{C} = \mathbf{GRS}_k(\mathbf{x}, \mathbf{y}) \Rightarrow \dim \mathscr{C}^{\star 2} = 2k - 1.$$

Square-code Distinguisher

 \mathscr{C} a code of length n and dimension k. DIMENSION < LENGTH.

$$\mathscr{C}$$
 random \Rightarrow dim $\mathscr{C}^{*2} = \min \left(\frac{k(k+1)}{2}, n \right)$.

$$\mathscr{C} = \mathbf{GRS}_k(\mathbf{x}, \mathbf{y}) \Rightarrow \dim \mathscr{C}^{\star 2} = \min (2k - 1, n).$$

Square-code Distinguisher

 \mathscr{C} a code of length n and dimension k. DIMENSION < LENGTH.

$$\mathscr{C}$$
 random \Rightarrow dim $\mathscr{C}^{*2} = \min \left(\frac{k(k+1)}{2}, n \right)$.

$$\mathscr{C} = \mathbf{GRS}_k(\mathbf{x}, \mathbf{y}) \Rightarrow \dim \mathscr{C}^{\star 2} = \min (2k - 1, n).$$

Distinguisher works if:
$$\begin{cases} \dim \mathscr{C}^{\star 2} < \frac{k(k+1)}{2}, \\ \dim \mathscr{C}^{\star 2} < n. \end{cases}$$

THE TOOLS: SQUARE-CODE DISTINGUISHER

How to reach the parameter range where the distinguisher works?

THE TOOLS: SQUARE-CODE DISTINGUISHER

How to reach the parameter range where the distinguisher

Definition (punctured code)

Let
$$\mathscr{C} \subseteq \mathbb{F}_q^n$$
 and $j \in [1, n]$.

$$\mathcal{P}_{\{j\}}\left(\mathscr{C}\right) \stackrel{\triangle}{=} \{(c_i)_{i \in \llbracket 1,n \rrbracket, i \neq j} \text{ s.t. } \mathbf{c} \in \mathscr{C}\}.$$

Definition (punctured code)

Let $\mathscr{C} \subseteq \mathbb{F}_q^n$ and $j \in [1, n]$.

$$\mathcal{P}_{\{j\}}\left(\mathscr{C}\right) \stackrel{\triangle}{=} \{(c_i)_{i \in \llbracket 1,n \rrbracket, i \neq j} \text{ s.t. } \boldsymbol{c} \in \mathscr{C}\}.$$

Definition (shortened code)

Let $\mathscr{C} \subseteq \mathbb{F}_q^n$ and $j \in [1, n]$.

$$\mathcal{S}_{\{j\}}\left(\mathscr{C}\right) \stackrel{\triangle}{=} \mathcal{P}_{\{j\}}\left(\left\{\boldsymbol{c} \in \mathscr{C} \mathrm{ s.t. } c_{j} = o\right\}\right).$$

For \mathscr{C} a **random** code of dimension k and length n:

$$\mathscr{C}' = \mathcal{S}(\mathscr{C})$$

length $n' = n - 1$
dimension $k' = k - 1$

$$\dim \mathscr{C}^{\star 2} = \min \left(\frac{k(k+1)}{2}, n \right).$$

For
$$\mathscr{C} = \mathsf{GRS}_k(\mathbf{x}, \mathbf{y})$$
:

$$\mathcal{C}$$
length = n
dimension = k

$$\mathscr{C}' = \mathcal{S}(\mathscr{C})$$

length $n' = n - 1$
dimension $k' = k - 1$

$$\dim \mathscr{C}^{\star 2} = \min \left(2k - 1, n \right).$$

For
$$\mathscr{C} = GRS_k(x, y)$$
:

$$\mathcal{C}$$
length = n
dimension = k

$$\mathscr{C}' = \mathcal{S}(\mathscr{C})$$

length $n' = n - 1$
dimension $k' = k - 1$

$$\dim \mathscr{C}^{\star 2} = \min \left(2k - 1, n \right).$$

Repeat until dim $\mathscr{C}^{\star 2} < n$.

Let (α, β) be an \mathbb{F}_q -base of \mathbb{F}_{q^2} . Denote $\phi_{\alpha}(\cdot)$, $\phi_{\beta}(\cdot)$ the projectors.

Definition

$\mathsf{Exp}_{(\boldsymbol{\alpha},\boldsymbol{\beta})}$

$$\begin{pmatrix} m_{1,1} & m_{1,2} & \cdots & m_{1,n} \\ m_{2,1} & m_{2,2} & \cdots & m_{2,n} \\ \vdots & \vdots & & \vdots \\ m_{k,1} & m_{k,2} & \cdots & m_{k,n} \end{pmatrix} \mapsto \begin{pmatrix} \mathbf{M}_{1,1} & \mathbf{M}_{1,2} & \cdots & \mathbf{M}_{1,n} \\ \mathbf{M}_{2,1} & \mathbf{M}_{2,2} & \cdots & \mathbf{M}_{2,n} \\ \vdots & \vdots & & \vdots \\ \mathbf{M}_{k,1} & \mathbf{M}_{k,2} & \cdots & \mathbf{M}_{k,n} \end{pmatrix}$$

were
$$\mathbf{M}_{i,j} \stackrel{\triangle}{=} \begin{pmatrix} \phi_{\alpha}(\alpha m_{i,j}) & \phi_{\alpha}(\beta m_{i,j}) \\ \phi_{\beta}(\alpha m_{i,i}) & \phi_{\beta}(\beta m_{i,i}) \end{pmatrix} \in \mathbb{F}_q^{2 \times 2}$$
.

Let (α, β) be an \mathbb{F}_q -base of \mathbb{F}_{q^2} . Denote $\phi_{\alpha}(\cdot)$, $\phi_{\beta}(\cdot)$ the projectors.

Definition

$\mathsf{Exp}_{(\alpha,\beta)}$

$$\begin{pmatrix} m_{1,1} & m_{1,2} & \cdots & m_{1,n} \\ m_{2,1} & m_{2,2} & \cdots & m_{2,n} \\ \vdots & \vdots & & \vdots \\ m_{k,1} & m_{k,2} & \cdots & m_{k,n} \end{pmatrix} \mapsto \begin{pmatrix} \mathbf{M}_{1,1} & \mathbf{M}_{1,2} & \cdots & \mathbf{M}_{1,n} \\ \mathbf{M}_{2,1} & \mathbf{M}_{2,2} & \cdots & \mathbf{M}_{2,n} \\ \vdots & \vdots & & \vdots \\ \mathbf{M}_{k,1} & \mathbf{M}_{k,2} & \cdots & \mathbf{M}_{k,n} \end{pmatrix}$$

were
$$\mathbf{M}_{i,j} \stackrel{\triangle}{=} \left(egin{array}{cc} \phi_{lpha}(lpha m_{i,j}) & \phi_{lpha}(eta m_{i,j}) \\ \phi_{eta}(lpha m_{i,j}) & \phi_{eta}(eta m_{i,j}) \end{array}
ight) \in \mathbb{F}_q^{2 imes 2}.$$

Property

Up to permutation of the rows and columns, we have:

$$\begin{aligned} \mathbf{Exp}_{(\alpha,\beta)}: & \left\{ \begin{array}{ccc} \mathbb{F}_q^{k\times n} & \to & \mathbb{F}_q^{2k\times 2n} \\ \mathbf{M} & \mapsto & \left(\begin{array}{c|c} \phi_\alpha(\alpha\mathbf{M}) & \phi_\alpha(\beta\mathbf{M}) \\ \hline \phi_\beta(\alpha\mathbf{M}) & \phi_\beta(\beta\mathbf{M}) \end{array} \right). \end{array} \right. \end{aligned}$$

Property

Up to permutation of the rows and columns, we have:

$$\begin{aligned} \mathbf{Exp}_{(1,\gamma)}: & \left\{ \begin{array}{ccc} \mathbb{F}_q^{k\times n} & \to & \mathbb{F}_q^{2k\times 2n} \\ \mathbf{M} & \mapsto & \left(\begin{array}{c|c} \phi_1(\mathbf{M}) & \phi_1(\gamma\mathbf{M}) \\ \hline \phi_{\gamma}(\mathbf{M}) & \phi_{\gamma}(\gamma\mathbf{M}) \end{array} \right). \end{array} \right. \end{aligned}$$

TRACE CODE

Definition

$$\operatorname{Tr}_q: \begin{array}{ccc} \mathbb{F}_q^2 & \to & \mathbb{F}_q \\ X & \mapsto & X+X^0 \end{array}$$

TRACE CODE

Definition

$$\mathbf{Tr}_q: egin{array}{cccc} \mathbb{F}_q 2 &
ightarrow & \mathbb{F}_q \ X & \mapsto & X+X^q \end{array}$$

Hypothesis: we will choose γ such that $\gamma^2 = -1$, *i.e.* ${\bf Tr}_q(\gamma) = {\bf 0}$.

Let
$$x = \phi_1(x) + \gamma \phi_{\gamma}(x)$$
.

$${f Tr}_q(x)=2{\phi_1(x)},$$
 ${f Tr}_q(-\gamma x)=2{\phi_{\gamma}(x)}.$

Property

Up to permutation of the rows and columns, we have:

$$\begin{aligned} \mathbf{Exp}_{(1,\gamma)}: & \left\{ \begin{array}{ccc} \mathbb{F}_q^{k\times n} & \to & \mathbb{F}_q^{2k\times 2n} \\ \mathbf{M} & \mapsto & \left(\begin{array}{c|c} \phi_1(\mathbf{M}) & \phi_1(\gamma\mathbf{M}) \\ \hline \phi_{\gamma}(\mathbf{M}) & \phi_{\gamma}(\gamma\mathbf{M}) \end{array} \right). \end{array} \right. \end{aligned}$$

Property

Up to permutation of the rows and columns, we have:

$$\begin{aligned} \mathbf{Exp}_{(\mathbf{1},\gamma)}: & & \begin{cases} & \mathbb{F}_q^{k\times n} & \to & \mathbb{F}_q^{2k\times 2n} \\ & & \mathbf{M} & \mapsto & 2\left(\begin{array}{c|c} & \mathbf{Tr}_q(\mathbf{M}) & \mathbf{Tr}_q(\gamma\mathbf{M}) \\ \hline & \mathbf{Tr}_q(-\gamma\mathbf{M}) & \mathbf{Tr}_q(\mathbf{M}) \end{array} \right). \end{aligned}$$

SQUARE CODE DIMENSION

To use the square code distinguisher, we need to compute

$$\dim \langle \mathbf{G}_{\mathrm{pk}} \rangle^{\star 2} = ???$$

SQUARE CODE DIMENSION

To use the square code distinguisher, we need to compute

$$\dim \langle \boldsymbol{G}_{\mathrm{pk}} \rangle^{\star 2} = ???$$

Theorem

Let $\mathbf{G} \in \mathbb{F}_{q^2}^{k \times n}$ be the generator matrix of a $\mathsf{GRS}_{\mathbb{F}_{q^2}}(n,k)$ code,

$$\mathscr{\hat{C}} \stackrel{\triangle}{=} \langle \operatorname{Exp}_{1,\gamma}(\boldsymbol{G}) \rangle_{\mathbb{F}_q},$$

$$\dim \hat{\mathscr{C}}^{\star 2} = k^2 + 4k - 2.$$

$$\mathscr{C} \stackrel{\triangle}{=} \langle \mathbf{G} \rangle$$
 ; $\widehat{\mathscr{C}_{1}} \stackrel{\triangle}{=} \langle \mathsf{Exp}_{1,\gamma}(\mathbf{G}) \rangle_{\mathbb{F}_{q}}$; $\widehat{\mathscr{C}_{2}} \stackrel{\triangle}{=} \langle \mathsf{Exp}_{1,\gamma}(\mathbf{G}) \rangle_{\mathbb{F}_{q^{2}}}$

$$\mathscr{C} \stackrel{\triangle}{=} \langle \mathbf{G} \rangle \qquad ; \qquad \widehat{\mathscr{C}_{\mathbf{1}}} \stackrel{\triangle}{=} \langle \mathbf{Exp}_{\mathbf{1},\gamma}(\mathbf{G}) \rangle_{\mathbb{F}_q} \qquad ; \qquad \widehat{\mathscr{C}_{\mathbf{2}}} \stackrel{\triangle}{=} \langle \mathbf{Exp}_{\mathbf{1},\gamma}(\mathbf{G}) \rangle_{\mathbb{F}_{q^2}}$$

Property 1

$$\dim_{\mathbb{F}_q} \widehat{\mathscr{C}}_1^{\star 2} = \dim_{\mathbb{F}_{q^2}} \widehat{\mathscr{C}}_2^{\star 2}$$

$$\mathscr{C} \stackrel{\triangle}{=} \langle \mathbf{G} \rangle \qquad ; \qquad \widehat{\mathscr{C}_{\mathbf{1}}} \stackrel{\triangle}{=} \langle \mathbf{Exp}_{\mathbf{1},\gamma}(\mathbf{G}) \rangle_{\mathbb{F}_q} \qquad ; \qquad \widehat{\mathscr{C}_{\mathbf{2}}} \stackrel{\triangle}{=} \langle \mathbf{Exp}_{\mathbf{1},\gamma}(\mathbf{G}) \rangle_{\mathbb{F}_{q^2}}$$

Property 2

$$\widehat{\mathscr{C}_{\mathbf{2}}} = \langle (\mathbf{C}, \gamma \mathbf{C}) \, | \, \mathbf{C} \in \mathscr{C} \rangle_{\mathbb{F}_{q^2}} + \langle (\mathbf{C}^q, -\gamma \mathbf{C}^q) \, | \, \mathbf{C} \in \mathscr{C} \rangle_{\mathbb{F}_{q^2}}.$$
(1)

$$\mathscr{C} \stackrel{\triangle}{=} \langle \mathbf{G} \rangle \qquad ; \qquad \widehat{\mathscr{C}_{\mathbf{1}}} \stackrel{\triangle}{=} \langle \mathbf{Exp}_{\mathbf{1},\gamma}(\mathbf{G}) \rangle_{\mathbb{F}_q} \qquad ; \qquad \widehat{\mathscr{C}_{\mathbf{2}}} \stackrel{\triangle}{=} \langle \mathbf{Exp}_{\mathbf{1},\gamma}(\mathbf{G}) \rangle_{\mathbb{F}_{q^2}}$$

Property 2

$$\widehat{\mathscr{C}_{\mathbf{2}}} = \langle (\mathbf{c}, \gamma \mathbf{c}) \, | \, \mathbf{c} \in \mathscr{C} \rangle_{\mathbb{F}_{q^2}} + \langle (\mathbf{c}^q, -\gamma \mathbf{c}^q) \, | \, \mathbf{c} \in \mathscr{C} \rangle_{\mathbb{F}_{q^2}}.$$
(1)

Corrolary

$$\mathscr{C} \stackrel{\triangle}{=} \langle \mathbf{G} \rangle \qquad ; \qquad \widehat{\mathscr{C}_{\mathbf{1}}} \stackrel{\triangle}{=} \langle \mathbf{Exp}_{\mathbf{1},\gamma}(\mathbf{G}) \rangle_{\mathbb{F}_q} \qquad ; \qquad \widehat{\mathscr{C}_{\mathbf{2}}} \stackrel{\triangle}{=} \langle \mathbf{Exp}_{\mathbf{1},\gamma}(\mathbf{G}) \rangle_{\mathbb{F}_{q^2}}$$

Property 2

$$\widehat{\mathscr{C}_{\mathbf{2}}} = \langle (\mathbf{C}, \gamma \mathbf{C}) \, | \, \mathbf{C} \in \mathscr{C} \rangle_{\mathbb{F}_{q^2}} + \langle (\mathbf{C}^q, -\gamma \mathbf{C}^q) \, | \, \mathbf{C} \in \mathscr{C} \rangle_{\mathbb{F}_{q^2}}.$$
(1)

Corrolary

$$\dim \widehat{\mathscr{C}}_2^{\star 2} = (2k+1) + (2k+1) + \binom{k+1}{2}$$

$$\mathscr{C} \stackrel{\triangle}{=} \langle \mathbf{G} \rangle \qquad ; \qquad \widehat{\mathscr{C}_{\mathbf{1}}} \stackrel{\triangle}{=} \langle \mathbf{Exp}_{\mathbf{1},\gamma}(\mathbf{G}) \rangle_{\mathbb{F}_q} \qquad ; \qquad \widehat{\mathscr{C}_{\mathbf{2}}} \stackrel{\triangle}{=} \langle \mathbf{Exp}_{\mathbf{1},\gamma}(\mathbf{G}) \rangle_{\mathbb{F}_{q^2}}$$

Property 2

$$\widehat{\mathscr{C}_{\mathbf{2}}} = \langle (\mathbf{C}, \gamma \mathbf{C}) \, | \, \mathbf{C} \in \mathscr{C} \rangle_{\mathbb{F}_{q^2}} + \langle (\mathbf{C}^q, -\gamma \mathbf{C}^q) \, | \, \mathbf{C} \in \mathscr{C} \rangle_{\mathbb{F}_{q^2}}.$$
(1)

Corrolary

$$\dim \widehat{\mathscr{C}}_2^{\star 2} = (2k+1) + (2k+1) + {k+1 \choose 2} = k^2 + 4k - 2.$$

$$\dim \langle \mathbf{G}_{\mathrm{pk}} \rangle^{\star 2} = k^2 + 4k - 2$$
 .

$$\dim \langle \mathbf{G}_{pk} \rangle^{\star 2} = \min(k^2 + 4k - 2, \frac{2n}{2}).$$

$$\dim \langle \mathbf{G}_{pk} \rangle^{\star 2} = \min(k^2 + 4k - 2, 2n).$$

■ What if we shorten some columns?

$$\dim \langle \mathbf{G}_{pk} \rangle^{\star 2} = \min(k^2 + 4k - 2, 2n).$$

- What if we shorten some columns?
 - ▶ If we shorten **two twin** columns?

$$\dim \langle \mathbf{G}_{pk} \rangle^{*2} = \min(k^2 + 4k - 2, 2n).$$

- What if we shorten some columns?
 - ▶ If we shorten **two twin** columns?

Equivalent to shortening the original GRS code.

$$\mathcal{S}_{\{j, au(j)\}}\left(extsf{Exp}(extbf{\textit{G}})
ight) = extsf{Exp}(\mathcal{S}_{\{j\}}\left(extbf{\textit{G}}
ight)).$$

$$\dim \langle \mathbf{G}_{pk} \rangle^{\star 2} = \min(k^2 + 4k - 2, 2n).$$

- What if we shorten some columns?
 - If we shorten two twin columns?

Equivalent to shortening the original GRS code.

$$\mathcal{S}_{\{j,\tau(j)\}}\left(\mathsf{Exp}(\mathbf{G})\right) = \mathsf{Exp}(\mathcal{S}_{\{j\}}\left(\mathbf{G}\right)).$$

$$\dim \mathcal{S}_{\{j,\tau(j)\}} \left(\mathbf{Exp}(\mathbf{G}) \right)^{\star 2} = (k-1)^2 + 4(k-1) - 2.$$

$$\dim \langle \mathbf{G}_{pk} \rangle^{*2} = \min(k^2 + 4k - 2, 2n).$$

- What if we shorten some columns?
 - ▶ If we shorten **two twin** columns?

Equivalent to shortening the original GRS code.

$$\mathcal{S}_{\left\{j,\tau(j)\right\}}\left(\mathbf{Exp}(\boldsymbol{G})\right) = \mathbf{Exp}(\mathcal{S}_{\left\{j\right\}}\left(\boldsymbol{G}\right)).$$

$$\dim \mathcal{S}_{\left\{j,\tau(j)\right\}}\left(\mathbf{Exp}(\boldsymbol{G})\right)^{\star 2} = (k-1)^2 + 4(k-1) - 2.$$

▶ If we shorten **one** column?

$$\dim \langle \mathbf{G}_{pk} \rangle^{*2} = \min(k^2 + 4k - 2, 2n).$$

- What if we shorten some columns?
 - If we shorten two twin columns?

Equivalent to shortening the original GRS code.

$$\mathcal{S}_{\left\{j,\tau(j)\right\}}\left(\mathbf{Exp}(\boldsymbol{G})\right) = \mathbf{Exp}(\mathcal{S}_{\left\{j\right\}}\left(\boldsymbol{G}\right)).$$

$$\dim \mathcal{S}_{\left\{j,\tau(j)\right\}}\left(\mathbf{Exp}(\boldsymbol{G})\right)^{\star 2} = (k-1)^2 + 4(k-1) - 2.$$

If we shorten one column?

Equivalent to shortening two twin columns and adding a random column.

$$\mathcal{S}_{\{j\}}\left(\mathbf{Exp}(\mathbf{G})\right) = \mathcal{S}_{\{j, au(j)\}}\left(\mathbf{Exp}(\mathbf{G})\right) + \langle r \rangle.$$

$$\dim \langle \mathbf{G}_{pk} \rangle^{*2} = \min(k^2 + 4k - 2, 2n).$$

- What if we shorten some columns?
 - ▶ If we shorten **two twin** columns?

Equivalent to shortening the original GRS code.

$$\mathcal{S}_{\{j,\tau(j)\}}\left(\mathbf{Exp}(\boldsymbol{G})\right) = \mathbf{Exp}(\mathcal{S}_{\{j\}}\left(\boldsymbol{G}\right)).$$

$$\dim \mathcal{S}_{\{j,\tau(j)\}}\left(\mathbf{Exp}(\boldsymbol{G})\right)^{\star 2} = (k-1)^2 + 4(k-1) - 2.$$

▶ If we shorten **one** column?

Equivalent to shortening two twin columns and adding a random column.

$$\mathcal{S}_{\{j\}}\left(\mathbf{Exp}(\mathbf{G})\right) = \mathcal{S}_{\{j,\tau(j)\}}\left(\mathbf{Exp}(\mathbf{G})\right) + \langle r \rangle.$$

$$\dim \mathcal{S}_{\{j,\tau(j)\}}\left(\mathbf{Exp}(\mathbf{G})\right)^{\star 2} = ((k-1)^2 + 4(k-1) - 2) + 2(k-1) + 1.$$

Let $G \in \mathbb{F}_{q^2}^{k \times n}$ be the generator matrix of a $GRS_{\mathbb{F}_{q^2}}(n, k)$ code. Let \mathcal{L} be a subset of [1, 2n] containing:

- \blacksquare ℓ_1 isolated columns;
- \blacksquare ℓ_2 pairs of twin columns,

(i.e.
$$|\mathcal{L}| = \ell_1 + 2\ell_2$$
)

then

Theorem

$$\label{eq:dimSL} \begin{split} \text{dim}\, \mathcal{S}_{\mathcal{L}} \, (\text{Exp}(\textbf{G}))^{\star 2} &= (\textbf{d}^2 + 4\textbf{d} - 2) + 2\textbf{d}\ell_1 + \binom{\ell_1 + 1}{2}, \\ \text{where}\,\, \textbf{d} &\stackrel{\triangle}{=} k - \ell_1 - \ell_2. \end{split}$$

USING THE DISTINGUISHER

Previous theorem (simplified)

$$\dim \mathcal{S}_{\mathcal{L}}\left(\mathbf{G}_{\mathsf{pk}}\right)^{\star 2} = f(\underline{\ell_{\mathsf{1}}},\underline{\ell_{\mathsf{2}}}).$$

USING THE DISTINGUISHER

- Pick \mathcal{L} a random subset of [1, 2n];
- For $i \notin \mathcal{L}$, compute dim $\mathcal{S}_{\mathcal{L} \cup \{i\}} (\mathbf{G}_{pk})^{*2}$:
 - $\begin{array}{ll} \blacktriangleright \ \dim \mathcal{S}_{\mathcal{L} \cup \{i\}} \left(\mathbf{G}_{\mathrm{pk}} \right)^{\star 2} = f(\underline{\ell_1} + 1, \underline{\ell_2}) & \Leftrightarrow \tau(i) \not \in \mathcal{L}, \\ \blacktriangleright \ \dim \mathcal{S}_{\mathcal{L} \cup \{i\}} \left(\mathbf{G}_{\mathrm{pk}} \right)^{\star 2} = f(\underline{\ell_1} 1, \underline{\ell_2} + 1) & \Leftrightarrow \tau(i) \in \mathcal{L}; \end{array}$

USING THE DISTINGUISHER

- Pick \mathcal{L} a random subset of [1, 2n];
- For $i \notin \mathcal{L}$, compute dim $\mathcal{S}_{\mathcal{L} \cup \{i\}} \left(\mathbf{G}_{pk} \right)^{*2}$:
 - $\qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \Rightarrow \tau(i) \not \in \mathcal{L},$
- For $j \in \mathcal{L}$, compute dim $\mathcal{S}_{\mathcal{L}\setminus\{j\}}\left(\mathbf{G}_{\mathsf{pk}}\right)^{\star 2}$:
 - $\blacktriangleright \ \dim \mathcal{S}_{\mathcal{L}\setminus \{j\}} \left(\mathbf{G}_{\mathrm{pk}}\right)^{\star 2} = f(\ell_{1} 1, \ell_{2}) \qquad \Leftrightarrow \tau(j) \not\in \mathcal{L},$
 - $\qquad \qquad \qquad \qquad \qquad \qquad \Rightarrow \tau(j) \in \mathcal{L};$

USING THE DISTINGUISHER

- Pick \mathcal{L} a random subset of [1, 2n];
- For $i \notin \mathcal{L}$, compute dim $\mathcal{S}_{\mathcal{L} \cup \{i\}} (\mathbf{G}_{\mathsf{pk}})^{*2}$:

 - $\dim \mathcal{S}_{\mathcal{L} \cup \{i\}} \left(\mathbf{G}_{pk} \right)^{\star 2} = f(\underline{\ell}_1 + 1, \underline{\ell}_2) \qquad \Leftrightarrow \tau(i) \notin \mathcal{L},$ $\dim \mathcal{S}_{\mathcal{L} \cup \{i\}} \left(\mathbf{G}_{pk} \right)^{\star 2} = f(\underline{\ell}_1 1, \underline{\ell}_2 + 1) \qquad \Leftrightarrow \tau(i) \in \mathcal{L};$
- For $j \in \mathcal{L}$, compute dim $\mathcal{S}_{\mathcal{L} \setminus \{j\}} (\mathbf{G}_{nk})^{*2}$:
 - $\Leftrightarrow au(j)
 ot\in \mathcal{L}$,
 - $\Leftrightarrow \tau(i) \in \mathcal{L};$ • $\dim S_{C\setminus\{i\}} (\mathbf{G}_{nk})^{*2} = f(\ell_1 + 1, \ell_2 - 1)$
- For $j \in \mathcal{L}$ s.t. $\tau(j) \notin \mathcal{L}$, for $i \notin \mathcal{L}$ s.t. $\tau(i) \in \mathcal{L}$, compute dim $S_{(\mathcal{L}\setminus\{i\})\cup\{j\}} (\mathbf{G}_{pk})^{*2}$:
 - ▶ $\dim \mathcal{S}_{(\mathcal{L}\setminus\{j\})\cup\{i\}} \left(\mathbf{G}_{pk}\right)^{*2} = f(\ell_1, \ell_2)$ $\Leftrightarrow i = \tau(j).$ ▶ $\dim \mathcal{S}_{(\mathcal{L}\setminus\{j\})\cup\{i\}} \left(\mathbf{G}_{pk}\right)^{*2} = f(\ell_1 2, \ell_2 + 1) \Leftrightarrow i \neq \tau(j).$

ATTACK OVERVIEW

- 1. Find which pairs of columns are twins;
- 2. In each pair, distinguish the left column from the right column (work in progress...);
- 3. Reconstruct the code over \mathbb{F}_{a^2} ;
- Use Sidelnikov-Shestakov's attack to find the structure of the GRS code;
- 5. Correct the errors to find the message.

KEY GENERATION

For parameters (m, q, n, k):

- lacksquare γ a primitive element of \mathbb{F}_{q^m}
- $\blacksquare \ \textbf{\textit{G}} \xleftarrow{\$} \textbf{\textit{GRS}}_{\mathbb{F}_{q^m}}(n,k) \in \mathbb{F}_{q^m}^{k \times n}$
- $lackbox{m{ar{G}}} = \mathbf{Exp}_{(1,\gamma,\ldots,\gamma^m)}(m{G}) \in \mathbb{F}_q^{mk imes mn}$
- $\mathcal{P}(\hat{\mathbf{G}}) \in \mathbb{F}_q^{mk \times 2n} \leftarrow$ keep only two columns per block of \mathbf{G} , puncture the (m-2) other columns.
- $lacktriangleq t = \lfloor rac{k}{2} \rfloor$ (error-correction capacity of $oldsymbol{G}^{\perp}$)
- $T_i \stackrel{\$}{\leftarrow} 2 \times 2$ inversible matrices for $i \in [1, n]$
- **T** the block-diagonal matrix of diagonal blocks T_1, \ldots, T_n
- $\mathbf{G}_{\mathsf{pk}} = \mathcal{P}(\hat{\mathbf{G}}) \cdot \mathbf{T}$

$$\begin{cases} \text{PublicKey} = & (\mathbf{G}_{pk}, t) \\ \text{SecretKey} = & (\gamma, \mathbf{G}, \mathbf{T}). \end{cases}$$

How does puncturing columns affect the structure of an expanded GRS code?

How does puncturing columns affect the structure of an expanded GRS code?

Puncturing = shortening the dual.

How does puncturing columns affect the structure of an expanded GRS code?

- Puncturing = shortening the dual.
- We know how shortening affects the structure.

How does puncturing columns affect the structure of an expanded GRS code?

- Puncturing = shortening the dual.
- We know how shortening affects the structure.

What is the dual of an expanded GRS code?

Definition

For an \mathbb{F}_q -base (b_1, \ldots, b_m) of \mathbb{F}_{q^m} , we define the **dual base** (b_1^*, \ldots, b_m^*) such that

Definition

For an \mathbb{F}_q -base (b_1, \ldots, b_m) of \mathbb{F}_{q^m} , we define the **dual base** (b_1^*, \ldots, b_m^*) such that

Property

Let (b_1, \ldots, b_m) be a base and (b_1^*, \ldots, b_m^*) its dual base. Then

$$orall j \in \llbracket \mathbf{1}, m
rbracket, \qquad \phi_{b_i}(\,\cdot\,) = \mathbf{Tr}_q(b_i^*\,\cdot\,).$$

$$\mathbf{Exp}_{(b_1,...,b_m)} \left(egin{array}{cccc} g_{1,1} & g_{1,2} & \cdots & g_{1,n} \ g_{2,1} & g_{2,2} & \cdots & g_{2,n} \ dots & dots & dots \ g_{k,1} & g_{k,2} & \cdots & g_{k,n} \ \end{array}
ight) =$$

$$\begin{pmatrix} \mathbf{Tr}_q(b_1^*b_1g_{1,1}) & \cdots & \mathbf{Tr}_q(b_1^*b_mg_{1,1}) & \cdots & \mathbf{Tr}_q(b_1^*b_1g_{1,n}) & \cdots & \mathbf{Tr}_q(b_1^*b_mg_{1,n}) \\ \vdots & \ddots & \vdots & & \vdots & \ddots & \vdots \\ \mathbf{Tr}_q(b_m^*b_1g_{1,1}) & \cdots & \mathbf{Tr}_q(b_m^*b_mg_{1,1}) & \cdots & \mathbf{Tr}_q(b_m^*b_1g_{1,n}) & \cdots & \mathbf{Tr}_q(b_m^*b_mg_{1,n}) \\ \vdots & & \vdots & & \vdots & & \vdots \\ \mathbf{Tr}_q(b_1^*b_1g_{k,1}) & \cdots & \mathbf{Tr}_q(b_1^*b_mg_{k,1}) & \cdots & \mathbf{Tr}_q(b_1^*b_1g_{k,n}) & \cdots & \mathbf{Tr}_q(b_1^*b_mg_{k,n}) \\ \vdots & & & \vdots & & \vdots & & \vdots \\ \mathbf{Tr}_q(b_m^*b_1g_{k,1}) & \cdots & \mathbf{Tr}_q(b_m^*b_mg_{k,1}) & \cdots & \mathbf{Tr}_q(b_m^*b_1g_{k,n}) & \cdots & \mathbf{Tr}_q(b_m^*b_mg_{k,n}) \end{pmatrix}$$

Theorem

Let ${m G}\in \mathbb{F}_{q^m}^{k imes n}$ and denote (b_1,\ldots,b_m) an \mathbb{F}_q -base of \mathbb{F}_{q^m} . Then

$$\langle \left(\mathsf{Exp}_{(b_1, \dots, b_m)}(\mathbf{G}) \right)^\mathsf{T} \rangle = \langle \mathsf{Exp}_{(\bar{b}_1, \dots, \bar{b}_m)}(\mathbf{G}^\mathsf{T}) \rangle,$$

where $(\bar{b}_1, \ldots, \bar{b}_m)$ is such that

$$\forall i \in \llbracket 1, m-1
rbracket, \qquad \sum_{j=1}^m b_j \bar{b}_j^{q^j} = 0.$$

We call $(\bar{b}_1, \ldots, \bar{b}_m)$ the **exp-dual** base of (b_1, \ldots, b_m) .

Remark

The **exp-dual** base $(\bar{b}_1, \dots, \bar{b}_m)$ is such that

$$\forall i \in \llbracket 1, m-1
rbracket, \qquad (\bar{b}_1^{q^i}, \ldots, \bar{b}_m^{q^i}) \in \langle (\bar{b}_1, \ldots, \bar{b}_m) \rangle^{\perp}.$$

Denote (b'_1, \ldots, b'_n) the basis such that

$$\mathsf{Gab}_1(b_1,\ldots,b_m)^{\perp}=\mathsf{Gab}_{m-1}(b_1',\ldots,b_m')$$

where $\mathbf{Gab}_k(x_1,\ldots,x_n)$ is the Gabidulin code of dimension k evaluated in points (x_1,\ldots,x_n) .

Then $\bar{b}_i = (b'_i)^{1/q}$. [Loio7]

Square code distinguisher can be adapted to various schemes using GRS codes (BL, RLCE, XGRS, ...).

- Square code distinguisher can be adapted to various schemes using GRS codes (BL, RLCE, XGRS, ...).
- Structure of expanded codes much richer than expected.

- Square code distinguisher can be adapted to various schemes using GRS codes (BL, RLCE, XGRS, ...).
- Structure of expanded codes much richer than expected.
 - Links with trace code;

- Square code distinguisher can be adapted to various schemes using GRS codes (BL, RLCE, XGRS, ...).
- Structure of expanded codes much richer than expected.
 - Links with trace code;
 - Links with Gabidulin codes;

- Square code distinguisher can be adapted to various schemes using GRS codes (BL, RLCE, XGRS, ...).
- Structure of expanded codes much richer than expected.
 - Links with trace code;
 - Links with Gabidulin codes;
 - Attacks on XGRS still not complete;

- Square code distinguisher can be adapted to various schemes using GRS codes (BL, RLCE, XGRS, ...).
- Structure of expanded codes much richer than expected.
 - Links with trace code;
 - Links with Gabidulin codes;
 - Attacks on XGRS still not complete;
 - Requires further study.

- Square code distinguisher can be adapted to various schemes using GRS codes (BL, RLCE, XGRS, ...).
- Structure of expanded codes much richer than expected.
 - Links with trace code;
 - Links with Gabidulin codes;
 - Attacks on XGRS still not complete;
 - Requires further study.
- Be careful when designing schemes using GRS codes!

- Square code distinguisher can be adapted to various schemes using GRS codes (BL, RLCE, XGRS, ...).
- Structure of expanded codes much richer than expected.
 - Links with trace code;
 - Links with Gabidulin codes;
 - Attacks on XGRS still not complete;
 - Requires further study.
- Be careful when designing schemes using GRS codes!

Thank you for your attention! Questions?

THIERRY P. BERGER AND PIERRE LOIDREAU.

How to mask the structure of codes for a cryptographic use. *Des. Codes Cryptogr.*, 35(1):63–79, 2005.

ALAIN COUVREUR, MATTHIEU LEQUESNE, AND JEAN-PIERRE TILLICH. **RECOVERING SHORT SECRET KEYS OF RLCE IN POLYNOMIAL TIME.**In Jintai Ding and Rainer Steinwandt, editors, *Post-Quantum Cryptography 2019*, volume 11505 of *LNCS*, pages 133–152, Chongquing, China, May 2019. Springer.

PIERRE LOIDREAU.

RANK METRIC AND CRYPTOGRAPHY.

Accreditation to supervise research, Université Pierre et Marie Curie - Paris VI, January 2007.

ROBERT J. MCELIECE.

A PUBLIC-KEY SYSTEM BASED ON ALGEBRAIC CODING THEORY, PAGES 114–116. Jet Propulsion Lab, 1978. DSN Progress Report 44.

HARALD NIEDERREITER.

KNAPSACK-TYPE CRYPTOSYSTEMS AND ALGEBRAIC CODING THEORY. *Problems of Control and Information Theory*, 15(2):159–166, 1986.

VLADIMIR MICHILOVICH SIDELNIKOV AND S.O. SHESTAKOV.

ON THE INSECURITY OF CRYPTOSYSTEMS BASED ON GENERALIZED REED-SOLOMON CODES.

Discrete Math. Appl., 1(4):439–444, 1992.

YONGGE WANG.

RLCE-KEM.

http://quantumca.org, 2017.
First round submission to the NIST post-quantum cryptography call.

CHRISTIAN WIESCHEBRINK.

AN ATTACK ON A MODIFIED NIEDERREITER ENCRYPTION SCHEME.

In Moti Yung, Yevgeniy Dodis, Aggelos Kiayias, and Tal Malk, editors, *Public-Key Cryptography - PKC 2006*, volume 3958 of *LNCS*, pages 14–26. Springer, 2006.

CHRISTIAN WIESCHEBRINK.

CRYPTANALYSIS OF THE NIEDERREITER PUBLIC KEY SCHEME BASED ON GRS SUBCODES.

IACR Cryptology ePrint Archive, Report 2009/452, 2009.