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Post-Quantum Cryptography
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Lattice Codes Hash Multivariate Isogenies

1978, Robert McEliece: [McE78]

A Public-Key Cryptosystem Based On Algebraic
Coding Theory
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ERROR CORRECTING CODES

Definition (Code)

An [n, R]g, linear code ¢ is a linear subspace of g of dimension

|z.

Definition (Decoder)
A decoder for the code ¥ is a function

(O Fg —)%U{?}.
We say that &4 can decode up to t errors if

Vc € €,Ve € g, el <t = dy(c+e)=c.




ERROR CORRECTING CODES

Definition (Generator matrix)

A generator matrix of a code ¥ is a matrix G € ng” such that:

¢ = {xG|x € F&}.

Definition (Parity-check matrix)

A parity-check matrix of a code % is a matrix H € F" " such
that:

¢ ={y e Fg |Hy" = o}.




ERROR CORRECTING CODES

Example (Repetition Code) Example (Decoder)

F, — 3 if x| <= 1:
0 — (0,0,0) return o
1 = (110 else:

return 1




ERROR CORRECTING CODES
Example (Repetition Code) Example (Decoder)

if x| <= 1:

F, — T3

0 — (0,0,0) return o
1 = (110 else:
return 1
11 O
G=(1 1 1) H= (o ; 1)
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Main idea: how hard is it to decode up to t errors?

m For a random code _me_dw t
m For some special families easy ,_hard
e — T t

of structured codes

easy = in polynomial time (with trap)
medium / hard = requires exponential time
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CODE-BASED CRYPTOGRAPHY

Main idea: how hard is it to decode up to t errors?

m For a random code medium drd — hard t
m For some special families ___©@°Y . i __hard ;
of structured codes Lo
CRYPTO

easy = in polynomial time (with trap)
medium / hard = requires exponential time
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HOW TO DESIGN A CODE-BASED CRYPTOSYSTEM?

Ingredients:

m a family F of structured codes; 4

m a decoder ¢ that can correct efficiently up to t errors; /

m a shaker!
Recipe

n

k<—]—“ e<—IF st|e|_t m « (G, C)

Gy < Shake(Gsy) €+ mka +e

The key to success:
m choose ts.t. itis hard to decode t errors for a random code;
m & needs the structured version of the code to be efficient;
m the shaker shakes well enough!
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SECURITY HYPOTHESIS

How could Eve break this scheme? 2 possibilities:

1. Reconstruct Gg from Gy, and then use ¢ » to decode.

Security hypothesis 1

G, is indistinguishable from a random k x n matrix.

2. Decode using Gpy.

Security hypothesis 2

Decoding t errors in a random [n, k]-code is hard.

Remark: Hypothesis 1 depends on the choice of the family of
codes F and the shaker, while Hypothesis 2 is generic!




SOME EXAMPLES

m Examples of choices of F:

Goppa codes [Original McEliece];
QC-MDPC codes [BIKE];

Rank-based codes [ROLLO]J;

Generalised Reed Solomon codes (GRS).
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SOME EXAMPLES

m Examples of choices of F:

Goppa codes [Original McEliece];
QC-MDPC codes [BIKE];

Rank-based codes [ROLLO]J;

Generalised Reed Solomon codes (GRS).

v

vV vy

m Examples of shakers:

row scrambler;

columns isometry (permutation);
subfield subcode;

adding random columns...

vV vy VvVYyy
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GRS-BASED CRYPTOSYSTEM

Niederreiter’'s proposal [Nie86],
» attack by Sidelnikov and Shestakov [SS92];

v

v

Berger-Loidreau’s cryptosystem [BLO5],
» attack by Wieschebrink [Wieo6, Wieo9];

v

Wang's RLCE cryptosystem [Wan17], submitted to the NIST,
» partial attack by Couvreur, L., Tillich [CLT19];

v

New proposal: “Encryption Scheme Based on Expanded
Reed-Solomon Codes” by Khathuria, Rosenthal and Weger,

» partial attack in this work.




THE XGRS CRYPTOSYSTEM (V1)



GENERALISED REED SOLOMON CODES

Definition (Generalised Reed Solomon codes)

The generalised Reed-Solomon (GRS) code with support x and
multiplier y of dimension k is defined as

GRS, (X, V) 2 {(Vif (X1), - -, Vaf (n)) | f € FalX]re} -



GENERALISED REED SOLOMON CODES

Definition (Generalised Reed Solomon codes)

The generalised Reed-Solomon (GRS) code with support x and
multiplier y of dimension k is defined as

GRS, (X, V) 2 {(Vif (X1), - -, Vaf (n)) | f € FalX]re} -

Sidelnikov Shestakov [SS92
Given a generator matrix of a GRS code %, it is possible to find x
and y such that ¥ = GRS,(x,y).
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Let (o, 8) be an Fq-base of Fg.. Denote ¢,(-), ¢3(-) the projectors.

Definition
EXp (., 5)
Fk;ﬂ‘l — IE%}?X2H
Miq Mo --- Mqp m, M, --- M,
Myq My -+ Myp M, M, --- M),
Mgy My o0 Mpp Mg, Mp, --- Mg,

Pa(am;;) ¢a(ﬂm:/)) 2%2
wereM (d)g(am,,,) ¢ﬁ(5m,,,) eIFq .




PROPERTIES OF Exp,, 5

For x = (X4,...,Xn) € F7,, denote

q21

(n)( X) (¢a(x1) ®8(X1)s -+, da(Xn), 95(Xn)) EIF?]”.




PROPERTIES OF EXp, 5

Definition

For x = (X4,...,Xn) € F7,, denote

q21

-

d)((xrj)ﬁ(x) (¢o¢(X1), ¢5(X1), ceey (z)oc(xn), ¢,B(Xn)) c Fén

Proposition

Let ¢ be an [n, k]-code over Fg, G a generator matrixand H a
parity-check matrix of €. Then, for any Fq-base (o, ) of Fee:

m o(x-G) = oM (x) - Exp(G) for all x € Iqu,
m o (H-yT) = Exp(H) - 6" (y ) forally € Fg,,
where Exp(M) = (EXP(MT))



PROPERTIES OF Exp,, 5

Let ¢ be an [n, R]-code over Fg.
Let © be the code over Fy defined by

C2{6"M(c)|c € €.

Proposition

m Exp(G) is a generator matrix of ¢;
m Exp(H) is a parity-check matrix of %,

where G is a generator matrix and H a parity-chek matrix of %




KEY GENERATION

For parameters (q, n, R):
m v a primitive element of Fg: (o, 5) = (1,7)

m G & GRSy, (n, k) € FEX
mt= [’E?J (error-correction capacity of G)

m S & 2k x 2k invertible matrix

mP3onxon permutation matrix
| ka — S . (Exp(177)G) . P

PublicKey = (G, t)
SecretKey = (7,G,S,P).



KEY GENERATION

For parameters (q, n, R):
m v a primitive element of Fg: (o, 5) = (1,7)
m G & GRSy, (n, k) € FEX
m t = |?] (error-correction capacity of G*)
m S & 2k x 2k invertible matrix

mP3onxon permutation matrix
| ka = S . (Exp(m,)G) . P

PublicKey = (G, t)
SecretKey = (7,G,S,P).



ENCRYPTION / DECRYPTION (EASY VERSION)

Recall the generic recipe:

sk<—]—" e<—IF” st|e|_t
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ENCRYPTION / DECRYPTION (EASY VERSION)

Recall the generic recipe:

KeyGen() Enc(m) Dec(c)

s $
Gy <~ F e« Iy st le|=t m < ®7(Gsy, )
Gy < Shake(Ggy) C < mGpy +e
XGRS:
. expand matrix
/ = + scramble rows
+ permute columns.
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ENCRYPTION / DECRYPTION (HARD VERSION)

Message space

{m e F7".|m| <1},

Encyption

Enc(m, G, ):
m c=G,m'
m Return c.




ENCRYPTION / DECRYPTION (HARD VERSION)

——

Dec(c,,G,S,P):
{m e FY", Im| <t} IC —-S'c

Encyption mc = ¢§;§§(c’)

.
Enc(m, G ): =G (¢E ))(P m"))
m ¢ =Gy’ ® Find m’ (correcting t errors)
m Return c. ®m Returnm=pP". ¢E:’7)7)(m’).




PARAMETERS

m g a prime power;
m n,ksuchthato < k<n<qg%

g| n | R | keysize(Mb)
31| 925 | 232 318

Figure: Parameters proposed for the scheme

(Classical McEliece key size = 8.37 Mb)
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THE TOOLS: SCHUR PRODUCT

Definition (Schur product)

Schur product of vectors: a*bé(a1b1,...,anbn).
Schur product of codes:

A*BQSpanFq {axblac A behB}.

Notation: €*2 2% « €.
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THE TOOLS: SQUARE-CODE DISTINGUISHER

Given a code ¥ of dimension k, what is the value of dim €*??

Square-code Distinguisher

% random = dime? = (") = ’?(f?2+1)_

¢ = GRSk(x,y) = dim&*? =2k — 1.
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THE TOOLS: SQUARE-CODE DISTINGUISHER

Proof.
Let cand ¢’ € GRSk(X.y).

€= (ap(X1), -, ¥nP(Xn)), € = (¥1q(x1), .., ¥nq(xn))

where p and g are two polynomials of degree at most k — 1.

cxc = yip(xa)q(xa),....yap(Xn)q(Xn)
= y12r(x1),...,y,2,r(Xn)-

where r is a polynomial of degree at most 2k — 2.
Hence,
(GRSk(x7 y))*2 = GRS2k—1 (X, Yy * y)
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& random = dim¥&* = @
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THE TOOLS: SQUARE-CODE DISTINGUISHER

Square-code Distinguisher

¢ a code of length n and dimension k. DIMENSION < LENGTH.

¢ random = dim%*? = min (@,n) :

¢ = GRSk(x,y) = dim%*? = min(2k—1,n).

dim @+ < *E),

Distinguish ks if: .
istinguisher works if: { dime*= < b,
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How to reach the parameter range where the distinguisher
works? __




THE TOOLS: PUNCTURED AND SHORTENED CODES

Definition (punctured code)

Let ¥ CFg andj € [1,n].

A
Py (€) ={(Ci)icp,n iz 8:t- € € CF




THE TOOLS: PUNCTURED AND SHORTENED CODES

Definition (punctured code)
Let ¥ CFg andj € [1,n].

A
Py (€) ={(Ci)icp,n iz 8:t- € € CF

Definition (shortened code)
Let € C Fg andj € [1,n].

A
Sy (€) =Py ({ce € st. ¢ = 0}).




THE TOOLS: PUNCTURED AND SHORTENED CODES

For ¢ a random code of dimension k and length n:

¢'random ‘% ¢ =S8(¢)

length =n — lengthn'=n—1
dimension =R dimension R = kR —1

dim ¢*2 = min (k(k+1),n) .

2




THE TOOLS: PUNCTURED AND SHORTENED CODES

For € = GRS(X,V):

3 % %' = S(%)

length =n — lengthn’ =n—1
dimension =R dimension R =k —1

dim¢*? = min (2k — 1,n).




THE TOOLS: PUNCTURED AND SHORTENED CODES

For € = GRS(X,V):

3 % %' = S(%)

length =n — lengthn’ =n—1
dimension =R dimension R =k —1

dim¢*? = min (2k — 1,n).

Repeat until dim ¢** < n.






PERMUTING THE GENERATOR MATRIX

Let (o, 5) be an Fy-base of Fg.. Denote ¢,(-), ¢5(-) the projectors.

Definition
EXp (., 5)
qu?;n N F(zquzn
M My --o Myp M, M, --- M,
Mmpq May -+ Map Mm, M, --- M),
Mpqy Mgy, -+ Mgy My, My, --- Mg,

A dalam;)) ¢a(ﬁmi,j)) 2%2
WereM’J_(qu(am,-J) %(Bmu) € Fg™°.



PERMUTING THE GENERATOR MATRIX

Let (o, B) be an Fq-base of Fg.. Denote ¢,(-), ¢3(-) the projectors.

EXP (o)
qu’(”fﬂ N F(z)kxzn
My My -+ My M, M, --- M,
Myq My -+ Myp Mm, M, --- M),
Mp1 Mgy oo Mgy My, Mg, --- Mg,

A Galamij)  da(Bm;)) .
M2 F2X2,
R ( pslami;)  dp(Bm;) =




PERMUTING THE GENERATOR MATRIX

Property

Up to permutation of the rows and columns, we have:

ngxn N Fékxzn
Exp(aﬂ) . M . ¢a(aM) | (z)a(,BM)
ds(aM) | ¢s(5M) )




PERMUTING THE GENERATOR MATRIX

Up to permutation of the rows and columns, we have:

FI?X n N ]Fék xX2n
q2
EXp(, ) : M $+(M) | P1 (M) .
¢'y (M ) ‘ ¢7 ('YM )




TRACE CODE

Fg2 — Fq
X

Trq a

— X+ x9




TRACE CODE

Definition

Fg2 — Fq

Tr, :
a X = x+x9

Hypothesis: we will choose v such that 42 = —1, i.e. Try(y) = 0.
Let x = 01 (x) + 79, (X).

Trg(x) = 201(x),
Trg(—x) = 26, (x).



PERMUTING THE GENERATOR MATRIX

Up to permutation of the rows and columns, we have:

FI?X n N ]Fék xX2n
q2
EXp(, ) : M $+(M) | P1 (M) .
¢'y (M ) ‘ ¢7 ('YM )




PERMUTING THE GENERATOR MATRIX

Up to permutation of the rows and columns, we have:

ngxn N ]FékXZH
EXP(L’Y) 5 M 3 Tl’q(M) TrQ(”/M)
Trg(—M) | Trg(m) )
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SQUARE CODE DIMENSION

To use the square code distinguisher, we need to compute

dim (G )*? =777

LetG ¢ IF’(;X” be the generator matrix of a GRSy, (n,R) code,

5 A
Cg :<Exp1,'y(G)>Fq7

dimé*2 = R + 4k — 2.

A
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G i GE(ER,,(6),

~

©2

=Y
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SQUARE CODE DIMENSION (PROOF)

G i GEE,,(6)x,

~

©2

=Y

Exp, ,(G))r,.

Property 1

R %2 g %2
dimg, €7 = dimg,_, €5




SQUARE CODE DIMENSION (PROOF)

G i GEERL (@), i GEEx, (O,

Property 2

% = ((c.70)|c € B, + (%, =) |c € D),
(1) ()




SQUARE CODE DIMENSION PROOF

2

¢

6 . GEEXD, (O, o GE(EXD,(6),

Property 2

=((c.70)[c e C)p, + <Kq—7ﬁﬂce%3
)

~ ( ax , —GxG ), ()0
G2 =(( a4 , —aI%G? ), @*@ [(¢,6)€F)r,
( a*xf , a*xef ) 1)x@




SQUARE CODE DIMENSION PROOF

2

¢

6 . GEEXD, (O, o GE(EXD,(6),

Property 2

=((c.70)[c e C)p, + <Kq—7ﬁﬂce%3
)

~ ( ax , —GxG ), ()0
G2 =(( a4 , —aI%G? ), @*@ [(¢,6)€F)r,
( a*xf , a*xef ) 1)x@

dim &2 = (2k +1) + (2k +1) + (kj1)



SQUARE CODE DIMENSION PROOF

2

¢

6  GEEP, O i GEEP,(6),

Property 2

=((c.70)[c e C)p, + <@q—7ﬁﬂce%3
)

~ ( ax , —GxG ), ()0
G2 =(( a4 , —aI%G? ), @*@ [(¢,6)€F)r,
( a*xf , a*xef ) 1)x@

dim%;? = 2k +1) + (2k +1) + (kj1):k2+4k—2. O



SQUARE OF A SHORTENED CODE

dim(Gpy)*? = R* + 4R — 2




SQUARE OF A SHORTENED CODE

dim(Gp)*? = min(kR? + 4k —2,2n).
P
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SQUARE OF A SHORTENED CODE

dim(Gp)** = min(k* 4+ 4k —2,2n).
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SQUARE OF A SHORTENED CODE

dim(Gp)** = min(k* 4+ 4k —2,2n).

m What if we shorten some columns?
» If we shorten two twin columns?

Equivalent to shortening the original GRS code.
Si+)y (EXp(G)) = Exp(Syj; (G)).
dim S{}ﬂ.(j)} (EXP(G))*2 = (I? — 1)2 + 4(’? — 1) — 2.

» If we shorten one column?

Equivalent to shortening two twin columns
and adding a random column.

Syjy (EXp(G)) = Syj -y (EXP(G)) + (r).
dim S{}ﬂ.(})} (EXP(G))Q = ((’? — 1)2 + 4(’? — 1) — 2) + 2(k — 1) +1.




SQUARE OF A SHORTENED CODE

LetG € IF’(;X” be the generator matrix of a GRS, (n, k) code.
Let £ be a subset of [1,2n] containing:

m /, isolated columns;
m /, pairs of twin columns, (ie. |L] = €4 +2(,)
then

dim Sz (Exp(G))*? = (d? + 4d — 2) + 2d/, + (121 : 1) ,

where dék — 0 — 4.







USING THE DISTINGUISHER

Previous theorem (simplified)

dim Sz (Gpk)™ = f(1, ).




USING THE DISTINGUISHER

m Pick £ a random subset of [1,2n];

m Fori ¢ £, compute dim Srugiy (ka)*zl

> dimSeug (Gok) ™ = F(4 +1,6) e r(i) ¢ L,
> dimSeugn (ka)*2 =f(ly — 1,0, +1) s 7(i) e L;




USING THE DISTINGUISHER

m Pick £ a random subset of [1,2n];

m Fori ¢ £, compute dim Srugiy (ka)*zl

> dimSeug (Gok) ™ = F(4 +1,6) e r(i) ¢ L,
> dimSeugn (ka)*2 =f(ly — 1,0, +1) s 7(i) e L;

m Forj € £, compute dim Sy 1y (Gpi) ™

» dim Sﬁ\{j} (ka)*2 =f(t —1,6) e 7()) €L,
> dimSey gy (Gok) ™ = f(0 + 1,6, — 1) s 7() e L




USING THE DISTINGUISHER

m Pick £ a random subset of [1,2n];

m Fori ¢ £, compute dim Srugiy (ka)*zl

> dimSeug (Gok) ™ = F(4 +1,6) e r(i) ¢ L,
> dimSeugn (ka)*2 =f(ly — 1,0, +1) s 7(i) e L;

m Forj € £, compute dim Sy 1y (Gpi) ™

» dim Sﬁ\{j} (ka)*2 =f(t —1,6) e 7()) €L,
> dimSey gy (Gok) ™ = f(0 + 1,6, — 1) s 7() e L

m Forje Lst 7(j) € L, fori ¢ Ls.t 7(i) € L,
compute dim Sz i) (Gok)
> dim Sz gyogy (Gok) ™ = F(4r. £2) & i=1().
» dim S(L\{j})u{i} (ka)*2 =f(ti —2,6+1) & i #7(j).




ATTACK OVERVIEW

1. Find which pairs of columns are twins;

2. In each pair, distinguish the left column from the right
column (work in progress...);

3. Reconstruct the code over Fg;

4. Use Sidelnikov-Shestakov’s attack to find the structure of
the GRS code;

5. Correct the errors to find the message.







KEY GENERATION

For parameters (m, g, n, R):
m 7 a primitive element of Fgm

m G & GRSy, (n, k) € Flix"
u é = Exp(1,'y ..... ’ym)(G) € Fg}kxmn

m P(G) € FI'™2" « keep only two columns per block of G,
puncture the (m — 2) other columns.

mt= [’E?J (error-correction capacity of G)

T & 2 x 2 inversible matrices for i [1,n]
m T the block-diagonal matrix of diagonal blocks T,..., T,
m Gy =PG) T

PublicKey = (G, t)
SecretKey = (v, G,T).
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How does puncturing columns affect
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®m Puncturing = shortening the dual.
m We know how shortening affects the structure.

What is the dual of an expanded GRS code?
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BETTER TOOLS FOR HIGHER DIMENSION

For an Fq-base (b, ...,bm) of Fgm, we define the dual base
(by,...,b},) such that

o [ 1ifi=]
(bi, b)) = { o elsewhere.

Property

Let (b,...,bm) be a base and (b%, ..., b?) its dual base. Then

vi € [1,m],vj € [1, m],

vj € [1,m], qﬁb},(-) — Trq(b;-"-).




BETTER TOOLS FOR HIGHER DIMENSION

911 Ga2 - Qin
924 G922 -+ Qan
EXPo,..bm) | . . :

9ka Gk2 “°° Gkrn

Trg(bibigra) -+ Trg(bibmgra) | -+ | Trg(bybigan) -+ Trq(bybmgi,n)
Tra(b0sgr) - Tro(Bybngrs) | - | Tra(bybigun) - Trg(bibmgin)
Trq(bf:b19k,1) Trq(bT;ngkn) T"q(bT:b19k,n) Trq(bﬂ:)mgk,n)
To(00:00s) - Tealbibmgun) | - | Ta(B30Gn) - Tralbhbngis)




BETTER TOOLS FOR HIGHER DIMENSION

LetG e IE‘S?S” and denote (b, ...,bm) an Fq-base of Fgn. Then

.....

where (b, ..., bm) is such that

m .
Vie [1,m—1], Zb,-Eﬁ' =o0.
j=1

We call (b, ..., bm) the exp-dual base of (b1, ..., bmn).




BETTER TOOLS FOR HIGHER DIMENSION

Remark
The exp-dual base (bs,...,by) is such that

Vie,m—1], (b%,...,b%) € ((br,...,bm))".

Denote (bY, ..., b}) the basis such that
Gab1(b1, ceey bm)l = Gabm_'](b{I, ceey b;n)

where Gaby (x4, ..., Xy) is the Gabidulin code of dimension k
evaluated in points (x4, ..., Xp).

Then b; = (b/)'/9. [Loio7]
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CONCLUSION

m Square code distinguisher can be adapted to various
schemes using GRS codes (BL, RLCE, XGRS, ...).

m Structure of expanded codes much richer than expected.
Links with trace code;

Links with Gabidulin codes;

Attacks on XGRS still not complete;

Requires further study.

v

vV vy

m Be careful when designing schemes using GRS codes!

Thank you for your attention!
Questions?
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